The future of bone regeneration: Artificial intelligence in biomaterials discovery

被引:11
作者
Fan, Jinfei [1 ,6 ]
Xu, Jiazhen [1 ,2 ,4 ]
Wen, Xiaobo [1 ,2 ,3 ]
Sun, Li [1 ,2 ,4 ]
Xiu, Yutao [1 ,2 ,4 ]
Zhang, Zongying [1 ,2 ,4 ]
Liu, Ting [1 ,2 ,3 ]
Zhang, Daijun [6 ]
Wang, Pan [7 ]
Xing, Dongming [1 ,2 ,4 ,5 ,6 ]
机构
[1] Qingdao Univ, Affiliated Hosp, Qingdao, Peoples R China
[2] Qingdao Univ, Qingdao Canc Inst, Qingdao, Peoples R China
[3] Qingdao Univ, Sch Pharm, Qingdao, Peoples R China
[4] Qingdao Univ, Sch Basic Med, Qingdao, Peoples R China
[5] Tsinghua Univ, Sch Life Sci, Beijing, Peoples R China
[6] Qingdao Univ, Med Coll, Qingdao, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Thorac Surg,Canc Hosp, Beijing 100021, Peoples R China
关键词
Bone regeneration; Biomaterial; Artificial intelligence; Machine learning; DATABASE; DEGRADATION; DESCRIPTORS; SCAFFOLDS; MODELS; CLASSIFICATION; NANOMATERIALS; PREDICTION; MOLECULES; ALLOYS;
D O I
10.1016/j.mtcomm.2024.109982
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bone defect is a highly prevalent disorder. Given that many people, especially the elderly are suffering from it, there's an urgent need for the development of bone tissue regeneration engineering. Multifarious artificial bone substitute biomaterials such as metals, bioceramics and polymers have been favored over autologous and allogeneic bone grafts because of their ease of sampling and good biocompatibility. However, not all the existing materials can fulfill the excellent properties of promoting bone regeneration, while new materials are difficult to tap. The advent of the age of big data has enabled artificial intelligence to provide fresh insights for materials discovery. Machine learning is a branch of AI, which can complete complex calculations and data analysis accurately and efficiently, so as to realize the discovery and reuse of materials. This article describes various machine learning models and reviews their examples in predicting the properties of bone regeneration materials, including biocompatibility, mechanical properties, toxicity, antibacterial properties, degradability, angiogenic and osteogenic properties. It allows people to more systematically capture a whole picture of bone regeneration, and hopefully provides a useful glimpse into the discovery of materials for bone regeneration.
引用
收藏
页数:11
相关论文
共 136 条
[1]   Data mining and knowledge discovery in materials science and engineering: A polymer nanocomposites case study [J].
AbuOmar, O. ;
Nouranian, S. ;
King, R. ;
Bouvard, J. L. ;
Toghiani, H. ;
Lacy, T. E. ;
Pittman, C. U., Jr. .
ADVANCED ENGINEERING INFORMATICS, 2013, 27 (04) :615-624
[2]   Automatic Quantitative Micro-Computed Tomography Evaluation of Angiogenesis in an Axially Vascularized Tissue-Engineered Bone Construct [J].
Arkudas, Andreas ;
Beier, Justus Patrick ;
Pryymachuk, Galyna ;
Hoereth, Tobias ;
Bleiziffer, Oliver ;
Polykandriotis, Elias ;
Hess, Andreas ;
Gulle, Heinz ;
Horch, Raymund E. ;
Kneser, Ulrich .
TISSUE ENGINEERING PART C-METHODS, 2010, 16 (06) :1503-1514
[3]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[4]   Bone regeneration and stem cells [J].
Arvidson, K. ;
Abdallah, B. M. ;
Applegate, L. A. ;
Baldini, N. ;
Cenni, E. ;
Gomez-Barrena, E. ;
Granchi, D. ;
Kassem, M. ;
Konttinen, Y. T. ;
Mustafa, K. ;
Pioletti, D. P. ;
Sillat, T. ;
Finne-Wistrand, A. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2011, 15 (04) :718-746
[6]   Computational modeling of degradation process of biodegradable magnesium biomaterials [J].
Barzegari, Mojtaba ;
Mei, Di ;
Lamaka, Sviatlana, V ;
Geris, Liesbet .
CORROSION SCIENCE, 2021, 190
[7]   A Computational Model for the Release of Bioactive Molecules by the Hydrolytic Degradation of a Functionalized Polyester-Based Scaffold [J].
Batoni, Elisa ;
Bonatti, Amedeo Franco ;
De Maria, Carmelo ;
Dalgarno, Kenneth ;
Naseem, Raasti ;
Dianzani, Umberto ;
Gigliotti, Casimiro Luca ;
Boggio, Elena ;
Vozzi, Giovanni .
PHARMACEUTICS, 2023, 15 (03)
[8]   The pathology of total joint arthroplasty - II. Mechanisms of implant failure [J].
Bauer, TW ;
Schils, J .
SKELETAL RADIOLOGY, 1999, 28 (09) :483-497
[9]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[10]  
Black Cameron R M, 2015, Curr Mol Biol Rep, V1, P132