A comprehensive survey on deep active learning in medical image analysis

被引:5
|
作者
Wang, Haoran [1 ,2 ]
Jin, Qiuye [3 ]
Li, Shiman [1 ,2 ]
Liu, Siyu [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Image Comp & Comp Assisted In, Shanghai 200032, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 23955, Saudi Arabia
关键词
Active learning; Medical image analysis; Survey; Deep learning; SEGMENTATION; CALIBRATION; ANNOTATION; SELECTION; CANCER;
D O I
10.1016/j.media.2024.103201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learningfor-Medical-Image-Analysis.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] A comprehensive survey of deep learning in the field of medical imaging and medical natural language processing: Challenges and research directions
    Pandey, Babita
    Pandey, Devendra Kumar
    Mishra, Brijendra Pratap
    Rhmann, Wasiur
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 5083 - 5099
  • [42] Recent advances and clinical applications of deep learning in medical image analysis
    Chen, Xuxin
    Wang, Ximin
    Zhang, Ke
    Fung, Kar-Ming
    Thai, Theresa C.
    Moore, Kathleen
    Mannel, Robert S.
    Liu, Hong
    Zheng, Bin
    Qiu, Yuchen
    MEDICAL IMAGE ANALYSIS, 2022, 79
  • [43] A comprehensive review of deep learning for medical image segmentation
    Xia, Qingling
    Zheng, Hong
    Zou, Haonan
    Luo, Dinghao
    Tang, Hongan
    Li, Lingxiao
    Jiang, Bin
    NEUROCOMPUTING, 2025, 613
  • [44] Survey on machine learning applied to medical image analysis
    Olivier, Aurelien
    Hoffmann, Clement
    Mansour, Ali
    Bressollette, Luc
    Clement, Benoit
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [45] Deep learning in digital pathology image analysis: a survey
    Deng, Shujian
    Zhang, Xin
    Yan, Wen
    Chang, Eric I-Chao
    Fan, Yubo
    Lai, Maode
    Xu, Yan
    FRONTIERS OF MEDICINE, 2020, 14 (04) : 470 - 487
  • [46] Deep learning in digital pathology image analysis: a survey
    Shujian Deng
    Xin Zhang
    Wen Yan
    Eric I-Chao Chang
    Yubo Fan
    Maode Lai
    Yan Xu
    Frontiers of Medicine, 2020, 14 : 470 - 487
  • [47] Deep Learning in Medical Image Analysis
    Chan, Heang-Ping
    Samala, Ravi K.
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 3 - 21
  • [48] Deep Learning in Medical Image Analysis
    Zhang, Yudong
    Gorriz, Juan Manuel
    Dong, Zhengchao
    JOURNAL OF IMAGING, 2021, 7 (04)
  • [49] A Tour of Unsupervised Deep Learning for Medical Image Analysis
    Raza, Khalid
    Singh, Nripendra Kumar
    CURRENT MEDICAL IMAGING, 2021, 17 (09) : 1059 - 1077
  • [50] Deep Learning and Big DataTechnologies in Medical Image Analysis
    Rastogi, Priyanka
    Singh, Vijendra
    Yadav, Monika
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 60 - 63