A comprehensive survey on deep active learning in medical image analysis

被引:4
|
作者
Wang, Haoran [1 ,2 ]
Jin, Qiuye [3 ]
Li, Shiman [1 ,2 ]
Liu, Siyu [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Image Comp & Comp Assisted In, Shanghai 200032, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 23955, Saudi Arabia
关键词
Active learning; Medical image analysis; Survey; Deep learning; SEGMENTATION; CALIBRATION; ANNOTATION; SELECTION; CANCER;
D O I
10.1016/j.media.2024.103201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learningfor-Medical-Image-Analysis.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Deep Learning Applications in Medical Image Analysis
    Ker, Justin
    Wang, Lipo
    Rao, Jai
    Lim, Tchoyoson
    IEEE ACCESS, 2018, 6 : 9375 - 9389
  • [42] A Review of Deep Learning on Medical Image Analysis
    Wang, Jian
    Zhu, Hengde
    Wang, Shui-Hua
    Zhang, Yu-Dong
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01): : 351 - 380
  • [43] A Review of Deep Learning on Medical Image Analysis
    Jian Wang
    Hengde Zhu
    Shui-Hua Wang
    Yu-Dong Zhang
    Mobile Networks and Applications, 2021, 26 : 351 - 380
  • [44] Deep learning models in medical image analysis
    Tsuneki, Masayuki
    JOURNAL OF ORAL BIOSCIENCES, 2022, 64 (03) : 312 - 320
  • [45] Deep Learning Approach for Medical Image Analysis
    Adegun, Adekanmi Adeyinka
    Viriri, Serestina
    Ogundokun, Roseline Oluwaseun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [46] Editorial: Deep learning for medical image analysis
    Lu, Ke
    Wang, Fei
    Shao, Ling
    Li, Weisheng
    NEUROCOMPUTING, 2020, 392 : 121 - 123
  • [47] MEDICAL IMAGE ANALYSIS BASED ON DEEP LEARNING
    Dong, S.
    Wang, P.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 122 : 66 - 66
  • [48] A Survey on Deep Learning-Based Medical Image Registration
    Xu, Ronghao
    Liu, Chongxin
    Liu, Shuaitong
    Huang, Weijie
    Zhang, Menghua
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 332 - 346
  • [49] Explainable Deep Learning Methods in Medical Image Classification: A Survey
    Patricio, Cristiano
    Neves, Joao C.
    Lincs, Nova
    Teixeira, Luis F.
    ACM COMPUTING SURVEYS, 2024, 56 (04)
  • [50] A Survey on Medical Image Segmentation Based on Deep Learning Techniques
    Moorthy, Jayashree
    Gandhi, Usha Devi
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (04)