A comprehensive survey on deep active learning in medical image analysis

被引:4
|
作者
Wang, Haoran [1 ,2 ]
Jin, Qiuye [3 ]
Li, Shiman [1 ,2 ]
Liu, Siyu [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Image Comp & Comp Assisted In, Shanghai 200032, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 23955, Saudi Arabia
关键词
Active learning; Medical image analysis; Survey; Deep learning; SEGMENTATION; CALIBRATION; ANNOTATION; SELECTION; CANCER;
D O I
10.1016/j.media.2024.103201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learningfor-Medical-Image-Analysis.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] O-MedAL: Online active deep learning for medical image analysis
    Smailagic, Asim
    Costa, Pedro
    Gaudio, Alex
    Khandelwal, Kartik
    Mirshekari, Mostafa
    Fagert, Jonathon
    Walawalkar, Devesh
    Xu, Susu
    Galdran, Adrian
    Zhang, Pei
    Campilho, Aurelio
    Noh, Hae Young
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (04)
  • [32] A Comprehensive Survey of Image Generation Models Based on Deep Learning
    Li J.
    Zhang C.
    Zhu W.
    Ren Y.
    Annals of Data Science, 2025, 12 (1) : 141 - 170
  • [33] Optimized deep learning model for comprehensive medical image analysis across multiple modalities
    Khan, Saif Ur Rehman
    Asif, Sohaib
    Zhao, Ming
    Zou, Wei
    Li, Yangfan
    Li, Xiangmin
    NEUROCOMPUTING, 2025, 619
  • [34] Deep Learning in Microscopy Image Analysis: A Survey
    Xing, Fuyong
    Xie, Yuanpu
    Su, Hai
    Liu, Fujun
    Yang, Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4550 - 4568
  • [35] Federated learning for medical image analysis: A survey
    Guan, Hao
    Yap, Pew-Thian
    Bozoki, Andrea
    Liu, Mingxia
    PATTERN RECOGNITION, 2024, 151
  • [36] Continual learning in medical image analysis: A survey
    Wu, Xinyao
    Xu, Zhe
    Tong, Raymond Kai-yu
    Computers in Biology and Medicine, 2024, 182
  • [37] Deep Learning in Multimodal Medical Image Analysis
    Xu, Yan
    HEALTH INFORMATION SCIENCE, HIS 2019, 2019, 11837 : 193 - 200
  • [38] A review on deep learning in medical image analysis
    Suganyadevi, S.
    Seethalakshmi, V
    Balasamy, K.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (01) : 19 - 38
  • [39] A review on deep learning in medical image analysis
    S. Suganyadevi
    V. Seethalakshmi
    K. Balasamy
    International Journal of Multimedia Information Retrieval, 2022, 11 : 19 - 38
  • [40] A Review of Deep Learning on Medical Image Analysis
    Wang, Jian
    Zhu, Hengde
    Wang, Shui-Hua
    Zhang, Yu-Dong
    Mobile Networks and Applications, 2021, 26 (01) : 351 - 380