A comprehensive survey on deep active learning in medical image analysis

被引:27
作者
Wang, Haoran [1 ,2 ]
Jin, Qiuye [3 ]
Li, Shiman [1 ,2 ]
Liu, Siyu [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Image Comp & Comp Assisted In, Shanghai 200032, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Thuwal 23955, Saudi Arabia
关键词
Active learning; Medical image analysis; Survey; Deep learning; SEGMENTATION; CALIBRATION; ANNOTATION; SELECTION; CANCER;
D O I
10.1016/j.media.2024.103201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learningfor-Medical-Image-Analysis.
引用
收藏
页数:34
相关论文
共 285 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Achiam J., 2023, ARXIV
[3]   Contextual Diversity for Active Learning [J].
Agarwal, Sharat ;
Arora, Himanshu ;
Anand, Saket ;
Arora, Chetan .
COMPUTER VISION - ECCV 2020, PT XVI, 2020, 12361 :137-153
[4]  
Aklilu J, 2022, PR MACH LEARN RES, V182, P892
[5]   Queries revisited [J].
Angluin, D .
THEORETICAL COMPUTER SCIENCE, 2004, 313 (02) :175-194
[6]  
Angluin D., 1988, Machine Learning, V2, P319, DOI 10.1007/BF00116828
[7]  
[Anonymous], 1994, P 11 INT C MACH LEAR
[8]  
[Anonymous], 2015, Adv. Neural Inf. Process. Syst.
[9]  
[Anonymous], 1994, tech. rep.
[10]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)