Lowering hexacelsian sintering temperature with additives: solid or liquid phase mechanisms

被引:2
作者
Saintonge, Arnaud [1 ]
Braun, James [2 ]
Danet, Julien [1 ]
Allemand, Alexandre [1 ,3 ]
Piquero, Thierry [2 ]
Beaudet-Savignat, Sophie [2 ]
Lepetitcorps, Yann [1 ]
机构
[1] CNRS, LCTS, UMR 5801, F-33600 Pessac, France
[2] CEA, DAM, RIPAULT, F-37269 Monts, France
[3] CEA, DAM, CESTA, F-33116 Le Barp, France
关键词
Barium aluminosilicate; Sintering additives; Sintering trajectory; Hexacelsian stability; Sintering mechanism; GLASS-CERAMIC MATRIX; BARIUM-ALUMINOSILICATE; CELSIAN TRANSFORMATION; SYSTEM BAO-AL2O3-SIO2; FABRICATION; SIO2F/SIO2; COMPOSITE; KINETICS; BEHAVIOR; MICROSTRUCTURE;
D O I
10.1016/j.jeurceramsoc.2024.03.026
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The sintering temperature of an oxide/oxide composite, comprising a barium aluminosilicate (BaAl2Si2O8 or BAS) matrix reinforced with alumina fibers, is constrained to avoid a decrease in the mechanical properties of the fibers. This paper highlights the potential of sintering additives in lowering the sintering temperature of the hexagonal BAS (hexacelsian), thereby safeguarding the integrity of the fibers. Consequently, the role of sintering additives, MgO, TiO2, and B2O3, is investigated to determine their impact on the BAS matrix sintering. The addition of 1 wt% of these additives successfully achieved this objective, as confirmed through thermal and microstructural analyses. MgO and TiO2 facilitated sintering kinetics through a solid-phase mechanism. Concerning the addition of B2O3, its effect on BAS sintering accelerated densification through a transient liquid-phase mechanism. Another consequence of incorporating these sintering additives is the destabilization of the hexagonal BAS. To limit this phenomenon, the addition of 1 wt% Rb2CO3 served as a stabilizer through steric hindrance, partially substituting the Ba element in the BAS matrix with Rb.
引用
收藏
页码:5938 / 5956
页数:19
相关论文
共 81 条
[1]  
Allameh SM, 1997, J AM CERAM SOC, V80, P3109, DOI 10.1111/j.1151-2916.1997.tb03239.x
[2]   A comparison between a new Ultra Fast Pressureless Sintering (UFPS) technology and Spark Plasma Sintering (SPS) for Barium AluminoSilicate metastable phase [J].
Allemand, A. ;
Guerin, C. ;
Besnard, C. ;
Billard, R. ;
Le Petitcorps, Y. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (02) :1524-1529
[3]  
[Anonymous], 2021, Ceramic Fibers and Textiles Technical Reference Guide
[4]   A PHASE-TRANSFORMATION STUDY IN THE BAO-CENTER-DOT-AL2O3-CENTER-DOT-2SIO(2) (BAS)-SI3N4 SYSTEM [J].
BANDYOPADHYAY, A ;
ASWATH, PB .
JOURNAL OF MATERIALS RESEARCH, 1995, 10 (12) :3143-3148
[5]  
Bansal NP, 2005, HANDBOOK OF CERAMIC COMPOSITES, P227, DOI 10.1007/0-387-23986-3_10
[6]   HYDROTHERMAL CHEMISTRY OF SILICATES .4. RUBIDIUM AND COESIUM ALUMINOSILICATES [J].
BARRER, RM ;
MCCALLUM, N .
JOURNAL OF THE CHEMICAL SOCIETY, 1953, (DEC) :4029-&
[7]   Microstructure and mechanical behaviour of a Nextel™610/alumina weak matrix composite subjected to tensile and compressive loadings [J].
Ben Ramdane, C. ;
Julian-Jankowiak, A. ;
Valle, R. ;
Renollet, Y. ;
Parlier, M. ;
Martin, E. ;
Diss, P. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (08) :2919-2932
[8]   New relationships between relative density and grain size during solid-state sintering of ceramic powders [J].
Bernard-Granger, Guillaume ;
Guizard, Christian .
ACTA MATERIALIA, 2008, 56 (20) :6273-6282
[9]   Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process [J].
Besnard, C. ;
Allemand, A. ;
David, P. ;
Maille, L. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (09) :3494-3497
[10]  
Billard R., 2015, Doctoral thesis