Real-time pavement surface crack detection based on lightweight semantic segmentation model

被引:4
作者
Yu, Huayang [1 ]
Deng, Yihao [1 ]
Guo, Feng [2 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Peoples R China
[2] Shandong Univ, Sch Qilu Transportat, Jinan 250002, Peoples R China
基金
美国国家科学基金会;
关键词
Pavement surface crack; Semantic segmentation; Computer vision; Real-time detection;
D O I
10.1016/j.trgeo.2024.101335
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Efficient and accurate pavement surface crack detection is crucial for analyzing pavement survey data. To achieve this goal, an improved lightweight semantic segmentation model based on BiSeNetv2, utilizing the detail branch, the semantic branch, and the guided aggregation module, is refined for automatic pavement surface crack detection. With the detail branch and the semantic branch, the low-level details and the high-level semantic context of pavement surface crack can be represented. Taking advantage of the guided aggregation module, the low-level and high-level crack features are mutually connected and fused. The gradient-weighted class activation mapping (Grad-CAM) is adopted to visualize the details of the evolution of crack feature extraction, fusion, and representation. Based on the evaluation results, the proposed lightweight model demonstrates its effectiveness and robustness in accurately segmenting pavement surface crack. Maximumly, it is 10.14% higher than the other model on F1 score, indicating its great potential for pavement crack detection.
引用
收藏
页数:12
相关论文
共 55 条
[1]   Automatic Pixel-Level Pavement Crack Detection Using Information of Multi-Scale Neighborhoods [J].
Ai, Dihao ;
Jiang, Guiyuan ;
Kei, Lam Siew ;
Li, Chengwu .
IEEE ACCESS, 2018, 6 :24452-24463
[2]  
[Anonymous], 1963, PhD Thesis
[4]   Review of Pavement Defect Detection Methods [J].
Cao, Wenming ;
Liu, Qifan ;
He, Zhiquan .
IEEE ACCESS, 2020, 8 :14531-14544
[5]  
Chen C., 2019, Influence of biopolymer gel-coated fibres on sand reinforcement as a model of plant root behaviour, P361
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]   Pavement crack detection and recognition using the architecture of segNet [J].
Chen, Tingyang ;
Cai, Zhenhua ;
Zhao, Xi ;
Chen, Chen ;
Liang, Xufeng ;
Zou, Tierui ;
Wang, Pan .
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2020, 18
[8]  
Chuang Shao, 2019, 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), P397, DOI 10.1109/IAEAC47372.2019.8997810
[9]   Efficient pavement crack detection and classification [J].
Cubero-Fernandez, A. ;
Rodriguez-Lozano, Fco. J. ;
Villatoro, Rafael ;
Olivares, Joaquin ;
Palomares, Jose M. .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2017,
[10]   Crack detection and quantification for concrete structures using UAV and transformer [J].
Ding, Wei ;
Yang, Han ;
Yu, Ke ;
Shu, Jiangpeng .
AUTOMATION IN CONSTRUCTION, 2023, 152