Medical Tumor Image Classification Based on Few-Shot Learning

被引:6
|
作者
Wang, Wenyan [1 ]
Li, Yongtao [3 ]
Lu, Kun [1 ]
Zhang, Jun [4 ]
Chen, Peng [4 ]
Yan, Ke [5 ]
Wang, Bing [1 ,2 ]
机构
[1] Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Anhui, Peoples R China
[2] Anhui Univ Technol, Wuhu Technol & Innovat Res Inst, Maanshan 243032, Anhui, Peoples R China
[3] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243032, Anhui, Peoples R China
[4] Anhui Univ, Coinnovat Ctr Informat Supply & Assurance Technol, Hefei 230032, Anhui, Peoples R China
[5] Natl Univ Singapore, Dept Built Environm, Singapore 117566, Singapore
基金
中国国家自然科学基金;
关键词
Training; Solid modeling; Cancer; Tumors; Medical diagnostic imaging; Breast cancer; Learning systems; Computer-aided diagnosis systems; few-shot learning; health care; medical image; BREAST-CANCER;
D O I
10.1109/TCBB.2023.3282226
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As a high mortality disease, cancer seriously affects people's life and well-being. Reliance on pathologists to assess disease progression from pathological images is inaccurate and burdensome. Computer aided diagnosis (CAD) system can effectively assist diagnosis and make more credible decisions. However, a large number of labeled medical images that contribute to improve the accuracy of machine learning algorithm, especially for deep learning in CAD, are difficult to collect. Therefore, in this work, an improved few-shot learning method is proposed for medical image recognition. In addition, to make full use of the limited feature information in one or more samples, a feature fusion strategy is involved in our model. On the dataset of BreakHis and skin lesions, the experimental results show that our model achieved the classification accuracy of 91.22% and 71.20% respectively when only 10 labeled samples are given, which is superior to other state-of-the-art methods.
引用
收藏
页码:715 / 724
页数:10
相关论文
共 50 条
  • [21] Mixture-based Feature Space Learning for Few-shot Image Classification
    Afrasiyabi, Arman
    Lalonde, Jean-Francois
    Gagne, Christian
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9021 - 9031
  • [22] Transductive clustering optimization learning for few-shot image classification
    Wang, Yi
    Bian, Xiong
    Zhu, Songhao
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [23] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Few-Shot Image Classification Method Based on Visual Language Prompt Learning
    Li B.
    Wang X.
    Teng S.
    Lyu X.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (02): : 11 - 17
  • [25] Partner-Assisted Learning for Few-Shot Image Classification
    Ma, Jiawei
    Xie, Hanchen
    Han, Guangxing
    Chang, Shih-Fu
    Galstyan, Aram
    Abd-Almageed, Wael
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10553 - 10562
  • [26] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [27] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [28] Deep Transfer Learning for Few-Shot SAR Image Classification
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    REMOTE SENSING, 2019, 11 (11)
  • [29] Laplacian Regularized Variational Few-Shot Learning for Image Classification
    Zahid, Yumna
    Tahir, Muhammad Atif
    Han, Jungong
    Shen, Qiang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 105 - 116
  • [30] A Deep few-shot learning algorithm for hyperspectral image classification
    Liu B.
    Zuo X.
    Tan X.
    Yu A.
    Guo W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (10): : 1331 - 1342