Unified Power Modeling Design for Various Raspberry Pi Generations Analyzing Different Statistical Methods

被引:3
作者
Manuel Paniego, Juan [1 ]
Libutti, Leandro [1 ]
Pi Puig, Martin [1 ]
Chichizola, Franco [1 ]
De Giusti, Laura [1 ,2 ]
Naiouf, Marcelo [1 ]
De Giusti, Armando [1 ,3 ]
机构
[1] Natl Univ La Plata, CEA CIC, Comp Sci Res Inst LIDI III LIDI, RA-1900 La Plata, Buenos Aires, Argentina
[2] Sci Res Agcy Prov Buenos Aires CICPBA, La Plata, Argentina
[3] Natl Council Sci & Tech Res CONICET, Buenos Aires, DF, Argentina
来源
COMPUTER SCIENCE - CACIC 2019 | 2020年 / 1184卷
关键词
Power; Raspberry Pi; Hardware counters; Modeling; Statistical models; PERFORMANCE;
D O I
10.1007/978-3-030-48325-8_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monitoring processor power is important to define strategies that allow reducing energy costs in computer systems. Today, processors have a large number of counters that allow monitoring system events such as CPU usage, memory, cache, and so forth. In previous works, it has been shown that parallel application consumption can be predicted through these events, but only for a given SBC board architecture. In this article, we analyze the portability of a power prediction statistical model on a new generation of Raspberry boards. Our experiments focus on the optimizations using different statistical methods so as to systematically reduce the final estimation error in the architectures analyzed. The final models yield an average error between 2.24% and 4.45%, increasing computational cost as the prediction error decreases.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 22 条
  • [1] THE NAS PARALLEL BENCHMARKS
    BAILEY, DH
    BARSZCZ, E
    BARTON, JT
    BROWNING, DS
    CARTER, RL
    DAGUM, L
    FATOOHI, RA
    FREDERICKSON, PO
    LASINSKI, TA
    SCHREIBER, RS
    SIMON, HD
    VENKATAKRISHNAN, V
    WEERATUNGA, SK
    [J]. INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1991, 5 (03): : 63 - 73
  • [2] Bekaroo G, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INNOVATIVE BUSINESS PRACTICES FOR THE TRANSFORMATION OF SOCIETIES (EMERGITECH), P361, DOI 10.1109/EmergiTech.2016.7737367
  • [3] Bircher W., 2004, University of Texas at Austin Technical report TR-041104, P1
  • [4] Complete system power estimation: A trickle-down approach based on performance events
    Bircher, W. Lloyd
    John, Lizy K.
    [J]. ISPASS 2007: IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE, 2007, : 158 - +
  • [5] Complete System Power Estimation Using Processor Performance Events
    Bircher, W. Lloyd
    John, Lizy K.
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (04) : 563 - 577
  • [6] Che SA, 2009, I S WORKL CHAR PROC, P44, DOI 10.1109/IISWC.2009.5306797
  • [7] Lee BC, 2006, ACM SIGPLAN NOTICES, V41, P185, DOI [10.1145/1168917.1168881, 10.1145/1168919.1168881]
  • [8] Power-aware predictive models of hybrid (MPI/OpenMP) scientific applications on multicore systems
    Lively, Charles
    Wu, Xingfu
    Taylor, Valerie
    Moore, Shirley
    Chang, Hung-Ching
    Su, Chun-Yi
    Cameron, Kirk
    [J]. COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2012, 27 (04): : 245 - 253
  • [9] Predictive Modeling for CPU, GPU, and FPGA Performance and Power Consumption: A Survey
    O'Neal, Kenneth
    Brisk, Philip
    [J]. 2018 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2018, : 763 - 768
  • [10] OpenMP, ABOUT US