Combining physics-informed neural networks with the freezing mechanism for general Hamiltonian learning

被引:2
作者
Castelano, Leonardo K. [1 ]
Cunha, Iann [1 ]
Luiz, Fabricio S. [2 ,3 ]
Napolitano, Reginaldo de Jesus [4 ]
Prado, Marcelo V. de Souza [5 ]
Fanchini, Felipe F. [5 ,6 ]
机构
[1] Univ Fed Sao Carlos UFSCar, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] Fed Inst Sao Paulo, BR-18202000 Itapetininga, SP, Brazil
[3] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
[4] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
[5] UNESP Sao Paulo State Univ, Fac Sci, BR-17033360 Bauru, SP, Brazil
[6] QuaTI Quantum Technol & Informat, BR-13560161 Sao Carlos, SP, Brazil
关键词
DYNAMICS;
D O I
10.1103/PhysRevA.110.032607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The precision required to characterize a Hamiltonian is central to developing advantageous quantum computers, providing powerful advances in quantum sensing and crosstalk mitigation. Traditional methods to determine a Hamiltonian are difficult due to the intricacies of quantum systems, involving numbers of equations and parameters that grow exponentially with the number of qubits. To mitigate these shortcomings, in this paper, we introduce an innovative and effective procedure integrating a physics-informed neural network (PINN) with a freezing mechanism to learn the Hamiltonian parameters efficiently. Although PINN and experimental data alone would become impractical as N increases, the mechanism we introduce freezes the interactions of most of the qubits, leaving just a qubit subsystem to be analyzed by the PINN method. Determination of all physical parameters is accomplished by analyzing the system by parts until completion. We validated the efficacy of our method using simulation data obtained from the IBM quantum computer to obtain the training data and we found that a PINN can learn the two-qubit parameters with high accuracy, achieving a median error of less than 0.1% for systems of up to four qubits. We have successfully combined the PINN analysis of two qubits with the freezing mechanism in the case of a four-qubit system.
引用
收藏
页数:8
相关论文
共 22 条
  • [1] Ancilla-assisted quantum process tomography
    Altepeter, JB
    Branning, D
    Jeffrey, E
    Wei, TC
    Kwiat, PG
    Thew, RT
    O'Brien, JL
    Nielsen, MA
    White, AG
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (19) : 4
  • [2] Sample-efficient learning of interacting quantum systems
    Anshu, Anurag
    Arunachalam, Srinivasan
    Kuwahara, Tomotaka
    Soleimanifar, Mehdi
    [J]. NATURE PHYSICS, 2021, 17 (08) : 931 - +
  • [3] Learning a Local Hamiltonian from Local Measurements
    Bairey, Eyal
    Arad, Itai
    Lindner, Netanel H.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [4] Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
  • [5] Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons
    Fanchini, F. F.
    Hornos, J. E. M.
    Napolitano, R. D. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (02):
  • [6] Efficient Estimation of Pauli Channels
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):
  • [7] Practical Hamiltonian learning with unitary dynamics and Gibbs states
    Gu, Andi
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits
    Guo, Qiujiang
    Zheng, Shi-Biao
    Wang, Jianwen
    Song, Chao
    Zhang, Pengfei
    Li, Kemin
    Liu, Wuxin
    Deng, Hui
    Huang, Keqiang
    Zheng, Dongning
    Zhu, Xiaobo
    Wang, H.
    Lu, C. -Y.
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [9] Hangleiter D, 2024, Arxiv, DOI [arXiv:2108.08319, 10.48550/arXiv.2108.08319, DOI 10.48550/ARXIV.2108.08319]
  • [10] Hamiltonian Tomography via Quantum Quench
    Li, Zhi
    Zou, Liujun
    Hsieh, Timothy H.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (16)