Tripartite real-time semantic segmentation network with scene commonality

被引:0
|
作者
Wang, Chenyang [1 ]
Wang, Chuanxu [1 ]
Liu, Peng [1 ]
Zhang, Zhe [1 ]
Lin, Guocheng [1 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao, Peoples R China
关键词
real-time semantic segmentation; three-branch network; scene commonality; attention mechanism; feature fusion;
D O I
10.1117/1.JEI.33.2.023016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The two-branch real-time semantic segmentation network can quickly acquire low-level details and high-level semantics. However, the large contextual gap between them results in adverse impact on their fusion, and limits the further improvement of real-time segmentation accuracy. This paper proposes a tripartite real-time semantic segmentation network with scene commonality (TriSCNet) to address this problem. First, we add a parallel scene commonality branch based on the current two-branch architecture to learn intrinsic common features in similar street scene images, such as the spatial location distribution of various objects and the internal connections between them at the semantic level. Further, with the guidance of commonality, we propose an external branch attention module to enrich and enhance the feature information of traditional two branches. Finally, we utilize an alignment and selective fusion module to correct the misaligned context in the semantic branch and highlight the essential spatial information in the detailed branch. Our proposed TriSCNet achieves an excellent trade-off between accuracy and speed, yielding 77.9% mIOU at 67.2 FPS on Cityscapes test set and 75.8% mIOU at 127.4 FPS on CamVid test set, respectively. (c) 2024 SPIE and IS&T
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Real-time road scene segmentation based on knowledge distillation Real-time road semantic segmentation
    Li, Wenting
    Yang, Huicheng
    Hu, Yaocong
    Lin, Yuanyuan
    Shuai, Zhen
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 429 - 433
  • [2] Lightweight Bilateral Network for Real-Time Semantic Segmentation
    Wang, Pengtao
    Li, Lihong
    Pan, Feiyang
    Wang, Lin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (04) : 673 - 682
  • [3] PBSNet: pseudo bilateral segmentation network for real-time semantic segmentation
    Luo, Hui-Lan
    Liu, Chun-Yan
    Mahmoodi, Soroosh
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [4] Lightweight Asymmetric Dilation Network for Real-Time Semantic Segmentation
    Hu, Xuegang
    Gong, Yu
    IEEE ACCESS, 2021, 9 : 55630 - 55643
  • [5] Real-time semantic segmentation with dual interaction fusion network
    Qu, Shenming
    Duan, Jiale
    Lu, Yongyong
    Cui, Can
    Xie, Yuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [6] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    Qu, Shaojun
    Wang, Zhuo
    Wu, Jie
    Feng, Yuewen
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [7] Hierarchical Semantic Broadcasting Network for Real-Time Semantic Segmentation
    Li, Genling
    Li, Liang
    Zhang, Jiawan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 309 - 313
  • [8] BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation
    Yu, Changqian
    Wang, Jingbo
    Peng, Chao
    Gao, Changxin
    Yu, Gang
    Sang, Nong
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 334 - 349
  • [9] LBARNet: Lightweight bilateral asymmetric residual network for real-time semantic segmentation
    Hu, Xuegang
    Zhou, Baoman
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 1 - 12
  • [10] FBRNet: a feature fusion and border refinement network for real-time semantic segmentation
    ShaoJun Qu
    Zhuo Wang
    Jie Wu
    YueWen Feng
    Pattern Analysis and Applications, 2024, 27