Spatial relaxation transformer for image super-resolution

被引:1
|
作者
Li, Yinghua [1 ]
Zhang, Ying [1 ]
Zeng, Hao [3 ]
He, Jinglu [1 ]
Guo, Jie [2 ]
机构
[1] Xian Univ Posts & Telecommun, Xian Key Lab Image Proc Technol & Applicat Publ Se, Changan West St, Xian 710121, Shaanxi, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, 2 Southern Tai Bai Rd, Xian 710071, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
关键词
Super-resolution; Vision transformer; Feature aggregation; Image enhancement; Swin transformer;
D O I
10.1016/j.jksuci.2024.102150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transformer-based approaches have demonstrated remarkable performance in image processing tasks due to their ability to model long-range dependencies. Current mainstream Transformer-based methods typically confine self-attention computation within windows to reduce computational burden. However, this constraint may lead to grid artifacts in the reconstructed images due to insufficient cross-window information exchange, particularly in image super-resolution tasks. To address this issue, we propose the Multi-Scale Texture Complementation Block based on Spatial Relaxation Transformer (MSRT), which leverages features at multiple scales and augments information exchange through cross windows attention computation. In addition, we introduce a loss function based on the prior of texture smoothness transformation, which utilizes the continuity of textures between patches to constrain the generation of more coherent texture information in the reconstructed images. Specifically, we employ learnable compressive sensing technology to extract shallow features from images, preserving image features while reducing feature dimensions and improving computational efficiency. Extensive experiments conducted on multiple benchmark datasets demonstrate that our method outperforms previous state-of-the-art approaches in both qualitative and quantitative evaluations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dtsr: detail-enhanced transformer for image super-resolution
    Huang, Xiaoqian
    Huang, Detian
    Huang, Qin
    Huang, Caixia
    Chen, Feiyang
    Xu, Zhengjun
    VISUAL COMPUTER, 2024, 40 (11) : 7667 - 7684
  • [22] Asymmetric convolution Swin transformer for medical image super-resolution
    Lu, Weijia
    Jiang, Jiehui
    Tian, Hao
    Gu, Jun
    Lu, Yuhong
    Yang, Wanli
    Gong, Ming
    Han, Tianyi
    Jiang, Xiaojuan
    Zhang, Tingting
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 85 : 177 - 184
  • [23] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Image Super-Resolution Using a Simple Transformer Without Pretraining
    Huan Liu
    Mingwen Shao
    Chao Wang
    Feilong Cao
    Neural Processing Letters, 2023, 55 : 1479 - 1497
  • [25] CTVSR: Collaborative Spatial-Temporal Transformer for Video Super-Resolution
    Tang, Jun
    Lu, Chenyan
    Liu, Zhengxue
    Li, Jiale
    Dai, Hang
    Ding, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 5018 - 5032
  • [26] Novel Image Enhancement for Super-Resolution
    Goto, Kyohei
    Goto, Tomio
    Hirano, Satoshi
    Sakurai, Masaru
    2015 IEEE 4TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2015, : 223 - 224
  • [27] Cross Transformer Network for Scale-Arbitrary Image Super-Resolution
    He, Dehong
    Wu, Song
    Liu, Jinpeng
    Xiao, Guoqiang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 633 - 644
  • [28] INFORMATION-GROWTH SWIN TRANSFORMER NETWORK FOR IMAGE SUPER-RESOLUTION
    Ji, Yantao
    Jiang, Peilin
    Shi, Jingang
    Guo, Yu
    Zhang, Ruiteng
    Wang, Fei
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3993 - 3997
  • [29] A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image
    Zhu, Yang
    Wang, Sen
    Zhang, Yinhui
    He, Zifen
    Wang, Qingjian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] CNN–Transformer gated fusion network for medical image super-resolution
    Juanjuan Qin
    Jian Xiong
    Zhantu Liang
    Scientific Reports, 15 (1)