A Lightweight Design to Convolution-Based Deep Learning CSI Feedback

被引:0
|
作者
Hu, Zhengyang [1 ]
Zou, Yafei [1 ]
Xue, Jiang [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Pazhou Lab Huangpu, Guangzhou 510555, Guangdong, Peoples R China
基金
国家重点研发计划;
关键词
Convolution; Feature extraction; Task analysis; Redundancy; Decoding; Artificial neural networks; Vectors; CSI feedback; deep learning; lightweight design; feature efficiency; convolution neural network; MIMO; NETWORK;
D O I
10.1109/LCOMM.2024.3424434
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In frequency division duplex mode, the user equipment sends downlink channel state information (CSI) to the base station for feedback. However, high-dimensional CSI can cause a large feedback overhead. Although convolution-based deep learning methods help compress and recover CSI, the redundant features among the CSI feature maps extracted by the convolution operator cause efficiency decay. This letter applies the Ghost module, which generates feature maps from a handful of primary features, to reduce redundancy and improve feedback efficiency. Additionally, a lightweight neural network, called GCRNet, is proposed based on the Ghost module. Compared with CLNet, GCRNet reduces complexity by an average of 22.15% while maintaining comparable performance.
引用
收藏
页码:2081 / 2085
页数:5
相关论文
共 50 条
  • [21] DESEM: Depthwise Separable Convolution-Based Multimodal Deep Learning for In-Game Action Anticipation
    Kim, Changhyun
    Bae, Jinsoo
    Baek, Insung
    Jeong, Jaeyoon
    Lee, Young Jae
    Park, Kiwoong
    Shim, Sang Heun
    Kim, Seoung Bum
    IEEE ACCESS, 2023, 11 : 46504 - 46512
  • [22] Multi-Task Learning-Based CSI Feedback Design in Multiple Scenarios
    Li, Xiangyi
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    Wang, Xiaoyun
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 7039 - 7055
  • [23] Integrated CSI Feedback and Localization using Deep Learning
    Lv, Yan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5701 - 5706
  • [24] A Novel Deep Learning based CSI Feedback Approach for Massive MIMO Systems
    Li, Lun
    Wu, Hao
    Xiao, Huahua
    Liu, Lei
    Lu, Zhaohua
    Yu, Guanghui
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 56 - 60
  • [25] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [26] CSI Feedback Based on Deep Learning for Massive MIMO Systems
    Liao, Yong
    Yao, Haimei
    Hua, Yuanxiao
    Li, Chunguo
    IEEE ACCESS, 2019, 7 : 86810 - 86820
  • [27] Deep CSI Compression for Dual-Polarized Massive MIMO Channels With Disentangled Representation Learning
    Fan, Suhang
    Xu, Wei
    Xie, Renjie
    Jin, Shi
    Ng, Derrick Wing Kwan
    Al-Dhahir, Naofal
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (09) : 5564 - 5580
  • [28] Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems
    Shin, Junyong
    Kang, Yujin
    Jeon, Yo-Seb
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (09) : 2382 - 2386
  • [29] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [30] Deep Learning for Massive MIMO CSI Feedback
    Wen, Chao-Kai
    Shih, Wan-Ting
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 748 - 751