A Lightweight Design to Convolution-Based Deep Learning CSI Feedback

被引:0
|
作者
Hu, Zhengyang [1 ]
Zou, Yafei [1 ]
Xue, Jiang [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Pazhou Lab Huangpu, Guangzhou 510555, Guangdong, Peoples R China
基金
国家重点研发计划;
关键词
Convolution; Feature extraction; Task analysis; Redundancy; Decoding; Artificial neural networks; Vectors; CSI feedback; deep learning; lightweight design; feature efficiency; convolution neural network; MIMO; NETWORK;
D O I
10.1109/LCOMM.2024.3424434
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In frequency division duplex mode, the user equipment sends downlink channel state information (CSI) to the base station for feedback. However, high-dimensional CSI can cause a large feedback overhead. Although convolution-based deep learning methods help compress and recover CSI, the redundant features among the CSI feature maps extracted by the convolution operator cause efficiency decay. This letter applies the Ghost module, which generates feature maps from a handful of primary features, to reduce redundancy and improve feedback efficiency. Additionally, a lightweight neural network, called GCRNet, is proposed based on the Ghost module. Compared with CLNet, GCRNet reduces complexity by an average of 22.15% while maintaining comparable performance.
引用
收藏
页码:2081 / 2085
页数:5
相关论文
共 50 条
  • [1] A deep learning-based approach to lightweight CSI feedback
    An, Yongli
    Lu, Shuoyang
    Cai, Haoran
    Ji, Zhanlin
    PHYSICAL COMMUNICATION, 2025, 68
  • [2] Deep Learning-Based Bitstream Error Correction for CSI Feedback
    Chang, Haoran
    Liang, Xin
    Li, Haozhen
    Shen, Jinghan
    Gu, Xinyu
    Zhang, Lin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (12) : 2828 - 2832
  • [3] Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems
    Tang, Shunpu
    Xia, Junjuan
    Fan, Lisheng
    Lei, Xianfu
    Xu, Wei
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 11216 - 11221
  • [4] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [5] A Lightweight Deep Network for Efficient CSI Feedback in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Liang, Le
    Wang, Ning
    Li, Geoffery Ye
    You, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1840 - 1844
  • [6] ACCsiNet: Asymmetric Convolution-Based Autoencoder Framework for Massive MIMO CSI Feedback
    Cao, Biao
    Yang, Yang
    Ran, Peng
    He, Dazhong
    He, Gang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3873 - 3877
  • [7] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [8] Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems
    Jo, Sanguk
    So, Jaewoo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (12) : 2776 - 2780
  • [9] Deep Learning-Based Joint Channel Estimation and CSI Feedback for RIS-Assisted Communications
    Feng, Hao
    Xu, Yuting
    Zhao, Yuping
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (08) : 1860 - 1864
  • [10] Deep Learning-Based Two-Timescale CSI Feedback for Beamforming Design in RIS-Assisted Communications
    Guo, Jiajia
    Chen, Weicong
    Wen, Chao-Kai
    Jin, Shi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 5452 - 5457