Quantitative Study on the Effects of Vegetation and Soil on Runoff and Sediment in the Loess Plateau

被引:2
|
作者
Duan, Gaohui [1 ]
Leng, Chunqian [2 ]
Zhang, Zeyu [3 ]
Zheng, Cheng [1 ]
Wen, Zhongming [1 ,4 ]
机构
[1] Northwest A&F Univ, Coll Grassland Agr, Yangling 712100, Peoples R China
[2] Shandong Inst Petr & Chem Technol, Coll Chem Engn, Dongying 257000, Peoples R China
[3] Shanghai Maritime Univ, Sch Econ & Management, Shanghai 201306, Peoples R China
[4] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 08期
基金
中国国家自然科学基金;
关键词
runoff and sediment; vegetation hierarchy; indicators; Loess Plateau; PLS-SEM; WATER CONSERVATION; TRADE-OFFS; EROSION; GRASSLAND; DIVERSITY; FOREST; COVER; RESTORATION; MODELS; IMPACT;
D O I
10.3390/f15081341
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Runoff and sediment (RAS) are important indicators of soil erosion in a watershed, playing a significant role in the migration of surface material and landform development. Previous studies have extensively documented the effects of trees, shrubs, herbs, and soil on runoff and sediment during erosive rainfall; however, the precise interactions among these factors and their influence on RAS yield within the vegetation hierarchy remain unclear. Using the random forest algorithm and the structural equation model, this research aimed to quantify the interaction of numerous variables within diverse vegetation hierarchies and how they affect RAS, as well as to identify critical indicators that influence RAS. The structural equation model results show that the grass properties have a direct effect on soil properties, and the grass properties and soil properties both affect the canopy properties directly; the soil properties and canopy properties are the main factors influencing runoff and sediment directly. In addition, the grass properties could affect RAS by influencing the soil properties indirectly, and the soil properties could also affect RAS indirectly by influencing the canopy properties. Height difference (HD) between two layers of vegetation had the highest weight of 1.043 among the canopy variables, showing that HD has a substantial effect on RAS. Among the soil properties, soil bulk density and maximum field capacity have a significant impact on RAS. We conclude that canopy properties have the greatest impact on RAS. In the future, more Caragana microphylla Lam and Robinia pseudoacacia Linn plants should be planted to prevent soil erosion. This study provides a scientific basis for vegetation planting management and soil erosion control on the Loess Plateau.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Response of runoff-sediment processes to vegetation restoration patterns under different rainfall regimes on the Loess Plateau
    Guo, Xiaoxue
    Du, Min
    Gao, Peng
    Tian, Peng
    Zhao, Guangju
    Mu, Xingmin
    Geng, Ren
    CATENA, 2024, 234
  • [42] Variation of runoff-sediment relationship at flood event scale in three typical watersheds of the Loess Plateau
    Geng, Ren
    Ye, Zixuan
    Tian, Peng
    Jin, Qiu
    Bi, Bo
    Zhao, Guangju
    Mu, Xingmin
    Wang, Tongshun
    Zhu, Dadong
    CATENA, 2024, 235
  • [43] Vegetation Restoration and Its Environmental Effects on the Loess Plateau
    Zhao, Hongfei
    He, Hongming
    Wang, Jingjing
    Bai, Chunyu
    Zhang, Chuangjuan
    SUSTAINABILITY, 2018, 10 (12)
  • [44] Detecting and attributing vegetation changes on China's Loess Plateau
    Li, Jingjing
    Peng, Shouzhang
    Li, Zhi
    AGRICULTURAL AND FOREST METEOROLOGY, 2017, 247 : 260 - 270
  • [45] Effects of retired steepland afforestation on soil properties: A case study in the Loess Plateau of China
    Liang, Di
    Fu, Bojie
    Lu, Yihe
    Liu, Yu
    Gao, Guangyao
    Li, Yifeng
    Li, Zhaoxia
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2012, 62 (06) : 547 - 555
  • [46] Increased sensitivity of vegetation to soil moisture and its key mechanisms in the Loess Plateau, China
    Wang, Xi
    Zhao, Fubo
    Wu, Yiping
    ECOHYDROLOGY, 2024, 17 (01)
  • [47] Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China
    Zhang, Chao
    Liu, Guobin
    Xue, Sha
    Song, Zilin
    GEODERMA, 2011, 161 (3-4) : 115 - 125
  • [48] Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China
    Dou, Yanxing
    Yang, Yang
    An, Shaoshan
    Zhu, Zhaolong
    CATENA, 2020, 185
  • [49] Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China
    Liu Bingxia
    Shao Ming'an
    JOURNAL OF ARID LAND, 2016, 8 (01) : 47 - 59
  • [50] Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China
    Wang, Yafeng
    Fu, Bojie
    Lue, Yihe
    Chen, Liding
    CATENA, 2011, 85 (01) : 58 - 66