PPFed: A Privacy-Preserving and Personalized Federated Learning Framework

被引:7
|
作者
Zhang, Guangsheng [1 ,2 ]
Liu, Bo [1 ,2 ]
Zhu, Tianqing [3 ]
Ding, Ming [4 ]
Zhou, Wanlei [3 ]
机构
[1] Univ Technol Sydney, Ctr Cyber Secur & Privacy, Ultimo, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Comp Sci, Ultimo, NSW 2007, Australia
[3] City Univ Macau, Fac Data Sci, Macau, Peoples R China
[4] CSIRO, Data61, Sydney, NSW 2015, Australia
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
基金
澳大利亚研究理事会;
关键词
Federated learning; Servers; Data models; Data privacy; Training; Privacy; Internet of Things; Gradient inversion attacks; personalized federated learning; privacy preservation; MEMBERSHIP INFERENCE ATTACKS;
D O I
10.1109/JIOT.2024.3360153
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed learning paradigm where a global model is trained using data samples from multiple clients but without the necessity of sharing raw data samples. However, it comes with several significant challenges in system designs, data quality, and communications. Recent research highlights a significant concern related to data privacy leakage through reserve-engineering model gradients at a malicious server. Moreover, a global model cannot provide good utility performance for individual clients when the local training data is heterogeneous in terms of quantity, quality, and distribution. Hence, personalized federated learning is highly desirable in practice to tailor the trained model for local usage. In this article, we propose privacy-preserving and personalized federated learning, a unified federated learning framework to simultaneously address privacy preservation and personalization. The intuition of our framework is to learn part of the model gradients at the server and the rest of the gradients at the local clients. To evaluate the effectiveness of the proposed framework, we conduct extensive experiments across four image classification data sets to show that our framework yields better privacy and personalization performance compared to the existing methods. We also claim that privacy preservation and personalization are essentially two facets of deep learning models, offering a unique perspective on their intrinsic interrelation.
引用
收藏
页码:19380 / 19393
页数:14
相关论文
共 50 条
  • [41] Lightweight and Dynamic Privacy-Preserving Federated Learning via Functional Encryption
    Yu, Boan
    Zhao, Jun
    Zhang, Kai
    Gong, Junqing
    Qian, Haifeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2496 - 2508
  • [42] Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing
    Lu, Xiaofeng
    Liao, Yuying
    Lio, Pietro
    Hui, Pan
    IEEE ACCESS, 2020, 8 : 48970 - 48981
  • [43] BPS-FL: Blockchain-Based Privacy-Preserving and Secure Federated Learning
    Yu, Jianping
    Yao, Hang
    Ouyang, Kai
    Cao, Xiaojun
    Zhang, Lianming
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 189 - 213
  • [44] PILE: Robust Privacy-Preserving Federated Learning Via Verifiable Perturbations
    Tang, Xiangyun
    Shen, Meng
    Li, Qi
    Zhu, Liehuang
    Xue, Tengfei
    Qu, Qiang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (06) : 5005 - 5023
  • [45] FedMDO: Privacy-Preserving Federated Learning via Mixup Differential Objective
    You, Xianyao
    Liu, Caiyun
    Li, Jun
    Sun, Yan
    Liu, Ximeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 10449 - 10463
  • [46] Privacy-Preserving Federated Learning for Data Heterogeneity in 6G Mobile Networks
    Zhang, Chuan
    Ren, Xuhao
    Zhang, Weiting
    Yuan, Yanli
    Xiong, Zehui
    Li, Chunhai
    Zhu, Liehuang
    IEEE NETWORK, 2025, 39 (02): : 134 - 141
  • [47] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [48] Privacy-Preserving Hierarchical Federated Recommendation Systems
    Chen, Yucheng
    Feng, Chenyuan
    Feng, Daquan
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1312 - 1316
  • [49] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [50] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517