Green Scalar Function Method for Analyzing Dielectric Media

被引:0
作者
Bravo, J. C. [1 ,2 ]
Colomina-Martinez, J. [1 ,2 ]
Sirvent-Verdu, J. J. [1 ,2 ]
Mena, E. J. [1 ,2 ]
Alvarez, M. L. [1 ,2 ]
Frances, J. [1 ,2 ]
Neipp, C. [1 ,2 ]
Gallego, Sergi [1 ,2 ]
机构
[1] Univ Alicante, IU Fis Aplicada Ciencias & Tecnol, Alicante 03080, Spain
[2] Univ Alacant, Dept Fis Engn Sistemes & Teoria Senyal, Alicante 03080, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
Green functions; scattering; dielectric media; diffraction; ELECTROMAGNETIC SCATTERING; NUMERICAL-METHODS; LIGHT-SCATTERING; EQUATIONS;
D O I
10.3390/app14178045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work we present a formalism based on scalar Green's functions to deal with electromagnetic scattering problems. Although the formulations of the Mie theory and Born approximations in terms of electromagnetic scattering are well known and relevant, they have certain disadvantages: complexity, computational time, few symmetries, etc. Therefore, the study with scalar Green's functions allows dealing with these problems with greater simplicity and efficiency. However, the information provided by the vector formulation is sacrificed. Nevertheless, different cases of electromagnetic scattering of dielectric media with different dimensions, geometries and refractive indices will be presented. Thus, we will be able to verify the capacity of this scalar method in predicting light-scattering problems.
引用
收藏
页数:9
相关论文
共 31 条
[11]  
Ishimaru A., 2017, ELECTROMAGNETIC WAVE
[12]   Numerical methods in electromagnetic scattering theory (Reprinted from vol 79, pg 775-824, 2003) [J].
Kahnert, F. Michael .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (11) :1791-1840
[13]   ON THE THEORY OF ELECTROMAGNETIC WAVE DIFFRACTION BY AN APERTURE IN AN INFINITE PLANE CONDUCTING SCREEN [J].
LEVINE, H ;
SCHWINGER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (04) :355-391
[14]   Massively Parallel Discontinuous Galerkin Surface Integral Equation Method for Solving Large-Scale Electromagnetic Scattering Problems [J].
Liu, Rui-Qing ;
Huang, Xiao-Wei ;
Du, Yu-Lin ;
Yang, Ming-Lin ;
Sheng, Xin-Qing .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (09) :6122-6127
[15]   Electromagnetic scattering in polarizable backgrounds [J].
Martin, OJF ;
Piller, NB .
PHYSICAL REVIEW E, 1998, 58 (03) :3909-3915
[16]   Time-dependent electromagnetic scattering from thin layers [J].
Nick, Joerg ;
Kovacs, Balazs ;
Lubich, Christian .
NUMERISCHE MATHEMATIK, 2022, 150 (04) :1123-1164
[17]  
Nieto-Vesperinas M., 2020, Woodhead Publishing Series in Electronic and Optical Materials, P39, DOI DOI 10.1016/B978-0-08-102403-4.00007-4
[18]  
Paknys R., 2016, Applied Frequency-Domain Electromagnetics
[19]   Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates [J].
Petropoulos, PG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :1037-1058
[20]   ELECTROMAGNETIC SCATTERING BY SURFACES OF ARBITRARY SHAPE [J].
RAO, SM ;
WILTON, DR ;
GLISSON, AW .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1982, 30 (03) :409-418