LSTM network in bilateral teleoperation of a skid-steering robot

被引:0
作者
Slawinski, Emanuel [1 ]
Rossomando, Francisco [1 ]
Chicaiza, Fernando A. [1 ]
Moreno-Valenzuela, Javier [2 ]
Mut, Vicente [1 ]
机构
[1] Univ Nacl San Juan, Inst Automat, Ave Libertador San Martin 1054, RA-5400 San Juan, Argentina
[2] Inst Politecn Nacl CITEDI, Ave Inst Politecn Nacl 1310, Tijuana 23435, Baja California, Mexico
关键词
Bilateral teleoperation; Time-varying delay; Skid-steering wheeled robot; LSTM network; SYSTEMS;
D O I
10.1016/j.neucom.2024.128248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper analyses a control scheme aided by LSTM networks for the delayed bilateral teleoperation system of a skid-steering wheeled mobile robot. The strategy implemented at the local and remote sites combines a virtual force based on nonlinear impedance, nonlinear Proportional-Integral (PI) gains, spring-damper, and robust neural dynamics compensation, including a gradient-based adjustment law or critic-actor RL trained offline using the ADAM algorithm. To analyse the stated strategy, stability analysis is performed. A Lyapunov- Krasovskii functional is proposed for evaluation along the system trajectories to analyse the evolution of control errors and network errors. Human-in-the-loop simulations are conducted and evaluated as a case study to observe the responses of velocities and yaw rate errors, lateral velocity, and network parameters in the presence of time-varying delays, variable load, and different terrain frictions.
引用
收藏
页数:12
相关论文
共 17 条
  • [1] Abubakar A, 2024, Arxiv, DOI arXiv:2402.16587
  • [2] Integrated deep learning method for workload and resource prediction cloud systems
    Bi, Jing
    Li, Shuang
    Yuan, Haitao
    Zhou, MengChu
    [J]. NEUROCOMPUTING, 2021, 424 : 35 - 48
  • [3] Autonomous Driving Control Using the DDPG and RDPG Algorithms
    Chang, Che-Cheng
    Tsai, Jichiang
    Lin, Jun-Han
    Ooi, Yee-Ming
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [4] Compensation for Time Delay in Tele-operation Control of Mobile Robot Using Neural Network
    Choi, Ho Jin
    Jung, Seul
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 1343 - 1347
  • [5] Dyck M, 2013, 2013 WORLD HAPTICS CONFERENCE (WHC), P683, DOI 10.1109/WHC.2013.6548491
  • [6] Lyapunov-Based Long Short-Term Memory (Lb-LSTM) Neural Network-Based Control
    Griffis, Emily J.
    Patil, Omkar Sudhir
    Bell, Zachary I.
    Dixon, Warren E.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2976 - 2981
  • [7] Stable learning laws design for long short-term memory identifier for uncertain discrete systems via control Lyapunov functions
    Guarneros-Sandoval, Alejandro
    Ballesteros, Mariana
    Salgado, Ivan
    Chairez, Isaac
    [J]. NEUROCOMPUTING, 2022, 491 : 144 - 159
  • [8] Delay-Dependent Stability Criteria of Teleoperation Systems With Asymmetric Time-Varying Delays
    Hua, Chang-Chun
    Liu, Xiaoping P.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (05) : 925 - 932
  • [9] Kong Q., 2021, Python Programming and Numerical Methods, P315, DOI [10.1016/B978-0-12-819549-9.00028-2, DOI 10.1016/B978-0-12-819549-9.00028-2]
  • [10] Operator dynamics for stability condition in haptic and teleoperation system: A survey
    Li, Hongbing
    Zhang, Lei
    Kawashima, Kenji
    [J]. INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2018, 14 (02)