A comprehensive investigation on one-pot synthesis of imidazole derivatives: quantum computational analysis, molecular docking, molecular dynamics simulations and antiviral activity against SARS-CoV-2

被引:1
|
作者
Lorin, Solo [1 ]
Rajaraman, D. [2 ]
Sonadevi, S. [2 ]
Solo, Peter [3 ]
Nagaraj, K. [4 ]
Raja, K. [1 ]
机构
[1] St Joseph Univ, Dept Chem, Dimapur 797115, Nagaland, India
[2] St Peters Engn Coll Autonomous, Dept Chem, Hyderabad, India
[3] St Josephs Coll Jakhama Autonomous, Dept Chem, Dimapur, India
[4] Natl Forens Sci Univ, Sch Pharm, Gandhinagar, India
关键词
Imidazole; molecular docking; molecular dynamic simulations; ADMET; DFT; HOMO-LUMO ANALYSIS; IN-VITRO; SPECTROSCOPIC INVESTIGATIONS; 4-SUBSTITUTED IMIDAZOLE; BIOLOGICAL EVALUATION; CORROSION INHIBITION; CARBON-STEEL; DFT; PREDICTION; DISCOVERY;
D O I
10.1080/00268976.2024.2390592
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New derivatives of 4-(2-(2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4,5-diphenyl-1H-imidazol-1-yl)ethyl)morpholine (DDIM) have been successfully synthesised and characterised using spectral methods such as FT-IR, H-1 NMR, and C-13 NMR. Density functional theory (DFT) with the B3LYP/6-311G (d, p) level of theory was used to determine optimised bond parameters and single crystal XRD investigations confirmed the structure of DDIM. The results of single crystal XRD measurements aligned well with the optimised geometrical parameters from DFT calculations. Frontier molecular orbital computations provided insights into the molecule's stability, chemical reactivity and charge transfer. Atomic charges were determined using mulliken population analysis. The molecular electrostatic potential (MEP) mapped to electron density surfaces identified potential reactive sites. This molecule shows promise as a potential NLO material due to its high mu beta(0) value. Binding affinities were determined via molecular docking against the COVID-19 major protease (Mpro: 6WCF/6Y84/6LU7). A 100 ns molecular dynamics simulation under in silico physiological conditions confirmed the stability of the complex structure formed with the COVID-19 protein, revealing a stable conformation and binding pattern in an imidazole derivative environment. Additionally, in-silico analysis predicted favourable to moderate anti-viral activity and anticipated the compound's absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Identification of potential phytochemicals from Citrus Limon against main protease of SARS-CoV-2: molecular docking, molecular dynamic simulations and quantum computations
    Khan, Jishan
    Sakib, Shahenur Alam
    Mahmud, Shafi
    Khan, Zidan
    Islam, Mohammad Nazmul
    Sakib, Mahfuz Ahmed
    Bin Emran, Talha
    Simal-Gandara, Jesus
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (21) : 10741 - 10752
  • [22] Computational evaluation of 2-arylbenzofurans for their potential use against SARS-CoV-2: A DFT, molecular docking, molecular dynamics simulation study
    Erdogan, Taner
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2022, 59 (01) : 59 - 72
  • [23] Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations
    Patel, Chirag N.
    Jani, Siddhi P.
    Jaiswal, Dharmesh G.
    Kumar, Sivakumar Prasanth
    Mangukia, Naman
    Parmar, Robin M.
    Rawal, Rakesh M.
    Pandya, Himanshu A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Thermal and Spectroscopic Studies of Some Prepared Metal Complexes and Investigation of their Potential Anticancer and Antiviral Drug Activity against SARS-CoV-2 by Molecular Docking Simulation
    El-Bindary, Ashraf A.
    El-Desouky, Mohamed G.
    El-Afify, Maher A. M.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (01): : 1053 - 1075
  • [25] Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies
    Zaki, Ahmed A.
    Ashour, Ahmed
    Elhady, Sameh S.
    Darwish, Khaled M.
    Al-Karmalawy, Ahmed A.
    JOURNAL OF TRADITIONAL AND COMPLEMENTARY MEDICINE, 2022, 12 (01): : 16 - 34
  • [26] DFT, molecular docking and molecular dynamics simulation studies on some newly introduced natural products for their potential use against SARS-CoV-2
    Erdogan, Taner
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1242
  • [27] Structure elucidation and computational studies of the thiazole derivative against SARS-CoV-2 virus: Insights from XRD, DFT, molecular docking, and molecular dynamics simulation
    Karthik, V
    Singh, K. Ravi
    Lohith, T. N.
    Leoma, Mofeli B.
    Sridhar, M. A.
    Sadashiva, M. P.
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1322
  • [28] Molecular Docking, ADMET Analysis and Molecular Dynamics (MD) Simulation to Identify Synthetic Isoquinolines as Potential Inhibitors of SARS-CoV-2 MPRO
    Correia, Paulo Ricardo dos Santos
    de Souza, Alesson Henrique Donato
    Chaparro, Andres Reyes
    Tenorio Barajas, Aldo Yair
    Porto, Ricardo Silva
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2023, 19 (05) : 391 - 404
  • [29] Molecular Docking Investigation of Antiviral Herbal Compounds as Potential Inhibitors of SARS-CoV-2 Spike Receptor
    Fallah, Mandi Soleyman
    Bayati, Mohammad
    Najafi, Ali
    Behmard, Esmael
    Davarpanah, Seyed Javad
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (05): : 12916 - 12924
  • [30] Molybdenum Carbonyl Complexes with Benzimidazole Derivatives Against SARS-CoV-2 by Molecular Docking and DFT/TDDFT Methods
    Ustun, Elvan
    Dusunceli, Serpil Demir
    Coskun, Feyzullah
    Ozdemir, Ismail
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2021, 20 (08): : 815 - 827