A flexible piezoelectric energy harvester featuring an eccentric pendulum via frequency up-conversion for human motion

被引:2
|
作者
Zhu, Yue [1 ]
Chen, Gantong [1 ]
Zhang, Jiaqin [1 ]
Li, Zhiyuan [1 ]
Zhou, Shengxi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
flexible piezoelectric; frequency up-conversion; large deformation; energy harvesting;
D O I
10.1088/1361-665X/ad606a
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents an innovative design of a flexible piezoelectric energy harvester featuring an eccentric pendulum (FPEH-P), which has two major characteristics: frequency up-conversion and large deformation that can improve output capacity. To clarify operational principles, we establish a dynamic model of the pendulum, and the vibration of the flexible piezoelectric plate is analyzed. Then, the two major characteristics of the FPEH-P are verified by experiments and simulations. Furthermore, it is verified that the FPEH-P can work at a low frequency (about 2 Hz) experimentally. Due to the large deformation of the piezoelectric plate, the maximum peak open-circuit voltage can reach 6.82 V. At an excitation frequency of 1.9 Hz and amplitude of 100 mm, the maximum average power can reach 6.06 mu W. The FPEH-P can efficiently harvest energy from individuals engaged in walking, jogging, and running, as evidenced by the output load voltage and average power. Moreover, it can also output voltage under multiple motion actions. Finally, it has been verified that the high-instantaneous voltage characteristic of the harvester can provide sustainable power to a timer.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact
    Amin Abedini
    Fengxia Wang
    The European Physical Journal Special Topics, 2019, 228 : 1459 - 1474
  • [2] Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact
    Abedini, Amin
    Wang, Fengxia
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (06): : 1459 - 1474
  • [3] DISCONTINUOUS DYNAMICS OF A FREQUENCY UP-CONVERSION PIEZOELECTRIC HARVESTER
    Onsorynezhad, Saeed
    Wang, Fengxia
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 8, 2020,
  • [4] A stacked electromagnetic energy harvester with frequency up-conversion for swing motion
    Zhou, Ning
    Zhang, Ying
    Bowen, Chris R.
    Cao, Junyi
    APPLIED PHYSICS LETTERS, 2020, 117 (16)
  • [5] Theoretical, numerical, and experimental studies of a frequency up-conversion piezoelectric energy harvester
    Li, Zhongjie
    Peng, Xuzhang
    Hu, Guobiao
    Peng, Yan
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223
  • [6] STUDY OF AN IMPACT DRIVEN FREQUENCY UP-CONVERSION PIEZOELECTRIC HARVESTER
    Abedini, Amin
    Onsorynezhad, Saeed
    Wang, Fengxia
    PROCEEDINGS OF THE ASME 10TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2017, VOL 3, 2017,
  • [7] A magnetic plucking frequency up-conversion piezoelectric energy harvester with nonlinear energy sink structure
    Shen, Jiwei
    Wan, Shui
    Fu, Jundong
    Li, Shuli
    Lv, Debao
    Dekemele, Kevin
    APPLIED ENERGY, 2024, 376
  • [8] Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms
    Pyo, Soonjae
    Kwon, Dae-Sung
    Ko, Hee-Jin
    Eun, Youngkee
    Kim, Jongbaeg
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2022, 9 (01) : 241 - 251
  • [9] Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms
    Soonjae Pyo
    Dae-Sung Kwon
    Hee-Jin Ko
    Youngkee Eun
    Jongbaeg Kim
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9 : 241 - 251
  • [10] PIEZOELECTRIC AND ELECTROMAGNETIC HYBRID ENERGY HARVESTER USING TWO CANTILEVERS FOR FREQUENCY UP-CONVERSION
    Kwon, Dae-Sung
    Ko, Hee-Jin
    Kim, Jongbaeg
    30TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2017), 2017, : 49 - 52