Weakly Coupled Systems of Semi-Linear Fractional σ-Evolution Equations with Different Power Nonlinearities

被引:0
作者
Saiah, Seyyid Ali [1 ]
Kainane Mezadek, Abdelatif [1 ,2 ]
Kainane Mezadek, Mohamed [1 ,2 ]
Mohammed Djaouti, Abdelhamid [3 ]
Al-Quran, Ashraf [3 ]
Bany Awad, Ali M. A. [4 ]
机构
[1] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Lab Math & Applicat, Hay Essalam 02000, Chlef, Algeria
[2] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Dept Math, Ouled Fares 021800, Chlef, Algeria
[3] King Faisal Univ, Fac Sci, Dept Math & Stat, Al Hufuf 31982, Saudi Arabia
[4] King Faisal Univ, Deanship Dev & Qual Assurance, Al Hasa 31982, Saudi Arabia
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
weakly coupled system; fractional equations; global in time existence; sigma-evolution equations; small data solutions; loss of decay; GLOBAL EXISTENCE; BLOW-UP; BEHAVIOR;
D O I
10.3390/sym16070884
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of small data Sobolev solutions to the Cauchy problem for weakly coupled systems of semi-linear fractional sigma-evolution equations with different power nonlinearities is of interest to us in this research. These solutions must exist globally (in time). We explain the relationships between the admissible range of exponents p(1) and p(2) symmetrically in our main modeland the regularity assumptions for the data by using L-m-L-q estimates of Sobolev solutions to related linear models with a vanishing right-hand side and some fixed point argument. This allows us to prove the global (in time) existence of small data Sobolev solutions.
引用
收藏
页数:25
相关论文
共 26 条
  • [1] Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
    Andreucci, D
    Herrero, MA
    Velazquez, JJL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01): : 1 - 53
  • [2] Cui S, 2001, NONLINEAR ANAL-THEOR, V43, P293
  • [3] DECAY ESTIMATES FOR A PERTURBED TWO-TERMS SPACE-TIME FRACTIONAL DIFFUSIVE PROBLEM
    D'Abbicco, Marcello
    Girardi, Giovanni
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (04): : 1056 - 1082
  • [4] Asymptotic profile for a two-terms time fractional diffusion problem
    D'Abbicco, Marcello
    Girardi, Giovanni
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1199 - 1228
  • [5] The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation
    D'Abbicco, Marcello
    Ebert, Marcelo Rempel
    Picon, Tiago Henrique
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 696 - 731
  • [6] Global Existence of Small Data Solutions to the Semilinear Fractional Wave Equation
    D'Abbicco, Marcello
    Ebert, Marcelo Rempel
    Picon, Tiago
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 465 - 471
  • [7] DAbbicco M., 2019, TRENDS MATH, P49
  • [8] Weakly Coupled System of Semi-Linear Fractional θ-Evolution Equations with Special Cauchy Conditions
    Djaouti, Abdelhamid Mohammed
    [J]. SYMMETRY-BASEL, 2023, 15 (07):
  • [9] Modified different nonlinearities for weakly coupled systems of semilinear effectively damped waves with different time-dependent coefficients in the dissipation terms
    Djaouti, Abdelhamid Mohammed
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS
    ESCOBEDO, M
    LEVINE, HA
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) : 47 - 100