Truthful and privacy-preserving generalized linear models

被引:0
作者
Qiu, Yuan [1 ]
Liu, Jinyan [2 ]
Wang, Di [3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Coll Comp, Atlanta, GA USA
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Provable Responsible AI & Data Analyt Lab, Thuwal, Saudi Arabia
[4] SDAIA KAUST Ctr Excellence Data Sci & Artificial, Thuwal, Saudi Arabia
[5] King Abdullah Univ Sci & Technol, Div CEMSE, Thuwal, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Generalized linear models; Bayesian game; Differential privacy; Truthful mechanism design;
D O I
10.1016/j.ic.2024.105225
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper explores estimating Generalized Linear Models (GLMs) when agents are strategic and privacy-conscious. We aim to design mechanisms that encourage truthful reporting, protect privacy, and ensure outputs are close to the true parameters. Initially, we address models with sub-Gaussian covariates and heavy-tailed responses with finite fourth moments, proposing a novel private, closed-form estimator. Our mechanism features: (1) o(1)-joint differential privacy with high probability; (2) o(1/n)-approximate Bayes Nash equilibrium for (1 - o(1))-fraction of agents; (3) o(1) error in parameter estimation; (4) individual rationality for (1 -o(1)) of agents; (5) o(1) payment budget. We then extend our approach to linear regression with heavy-tailed data, using an l(4)-norm shrinkage operator to propose a similar estimator and payment scheme. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:30
相关论文
共 42 条
[21]   High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data [J].
Hu, Lijie ;
Ni, Shuo ;
Xiao, Hanshen ;
Wang, Di .
PROCEEDINGS OF THE 41ST ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '22), 2022, :227-236
[22]  
Jain P, 2014, PR MACH LEARN RES, V32
[23]   Mechanism Design in Large Games: Incentives and Privacy [J].
Kearns, Michael ;
Pai, Mallesh M. ;
Roth, Aaron ;
Ullman, Jonathan .
AMERICAN ECONOMIC REVIEW, 2014, 104 (05) :431-435
[24]  
Kong YQ, 2020, AAAI CONF ARTIF INTE, V34, P2095
[25]  
Ligett K., 2012, INT WORKSH INT NETW, P378, DOI 10.1007/978-3-642-35311-6_28
[26]   Eliciting informative feedback: The peer-prediction method [J].
Miller, N ;
Resnick, P ;
Zeckhauser, R .
MANAGEMENT SCIENCE, 2005, 51 (09) :1359-1373
[27]  
Nissim K, 2012, P 13 ACM C EL COMM, P774
[28]  
Nordberg L., 1989, Journal of Official Statistics, V5, P223
[29]  
Qiu Y., 2022, 18 C WEB INT EC WINE
[30]  
Rubinstein BIP, 2017, PR MACH LEARN RES, V70