Pre-trained language models for keyphrase prediction: A review

被引:2
|
作者
Umair, Muhammad [1 ]
Sultana, Tangina [1 ,2 ]
Lee, Young-Koo [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Global Campus, Yongin, South Korea
[2] Hajee Mohammad Danesh Sci & Technol Univ, Dept Elect & Commun Engn, Dinajpur, Bangladesh
来源
ICT EXPRESS | 2024年 / 10卷 / 04期
关键词
Keyphrases; Keyphrase extraction; Keyphrase generation; Pre-trained language models; Natural language processing; Large language models; Review; EXTRACTION;
D O I
10.1016/j.icte.2024.05.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyphrase Prediction (KP) is essential for identifying keyphrases in a document that can summarize its content. However, recent Natural Language Processing (NLP) advances have developed more efficient KP models using deep learning techniques. The limitation of a comprehensive exploration jointly both keyphrase extraction and generation using pre-trained language models spotlights a critical gap in the literature, compelling our survey paper to bridge this deficiency and offer a unified and in-depth analysis to address limitations in previous surveys. This paper extensively examines the topic of pre-trained language models for keyphrase prediction (PLM-KP), which are trained on large text corpora via different learning (supervisor, unsupervised, semi-supervised, and self-supervised) techniques, to provide respective insights into these two types of tasks in NLP, precisely, Keyphrase Extraction (KPE) and Keyphrase Generation (KPG). We introduce appropriate taxonomies for PLM-KPE and KPG to highlight these two main tasks of NLP. Moreover, we point out some promising future directions for predicting keyphrases. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:871 / 890
页数:20
相关论文
共 50 条
  • [1] Addressing Extraction and Generation Separately: Keyphrase Prediction With Pre-Trained Language Models
    Liu, Rui
    Lin, Zheng
    Wang, Weiping
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 3180 - 3191
  • [2] LMRank: Utilizing Pre-Trained Language Models and Dependency Parsing for Keyphrase Extraction
    Giarelis, Nikolaos
    Karacapilidis, Nikos
    IEEE ACCESS, 2023, 11 : 71459 - 71471
  • [3] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [4] A Brief Review of Relation Extraction Based on Pre-Trained Language Models
    Xu, Tiange
    Zhang, Fu
    FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 775 - 789
  • [5] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    ENGINEERING, 2023, 25 : 51 - 65
  • [6] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [7] Pre-trained language models: What do they know?
    Guimaraes, Nuno
    Campos, Ricardo
    Jorge, Alipio
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 14 (01)
  • [8] Pre-Trained Language Models for Text Generation: A Survey
    Li, Junyi
    Tang, Tianyi
    Zhao, Wayne Xin
    Nie, Jian-Yun
    Wen, Ji-Rong
    ACM COMPUTING SURVEYS, 2024, 56 (09)
  • [9] Pre-trained Language Models in Biomedical Domain: A Systematic Survey
    Wang, Benyou
    Xie, Qianqian
    Pei, Jiahuan
    Chen, Zhihong
    Tiwari, Prayag
    Li, Zhao
    Fu, Jie
    ACM COMPUTING SURVEYS, 2024, 56 (03)
  • [10] SIFRank: A New Baseline for Unsupervised Keyphrase Extraction Based on Pre-Trained Language Model
    Sun, Yi
    Qiu, Hangping
    Zheng, Yu
    Wang, Zhongwei
    Zhang, Chaoran
    IEEE ACCESS, 2020, 8 : 10896 - 10906