Preparing Physicians of the Future: Incorporating Data Science into Medical Education

被引:0
作者
Shah, Rishi M. [1 ]
Shah, Kavya M. [2 ]
Bahar, Piroz [3 ]
James, Cornelius A. [4 ]
机构
[1] Yale Coll, Dept Appl Math, New Haven, CT USA
[2] Univ Cambridge, Dept Clin Neurosci, Hills Rd, Cambridge CB2 0QQ, England
[3] Univ Michigan, Med Sch, Ann Arbor, MI USA
[4] Univ Michigan, Dept Internal Med Pediat & Learning Hlth Sci, Med Sch, Ann Arbor, MI USA
关键词
Data science; Medical education; Evidence-based medicine; Clinical informatics; LIMITS;
D O I
10.1007/s40670-024-02137-2
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The recent excitement surrounding artificial intelligence (AI) in health care underscores the importance of physician engagement with new technologies. Future clinicians must develop a strong understanding of data science (DS) to further enhance patient care. However, DS remains largely absent from medical school curricula, even though it is recognized as vital by medical students and residents alike. Here, we evaluate the current DS landscape in medical education and illustrate its impact in medicine through examples in pathology classification and sepsis detection. We also explore reasons for the exclusion of DS and propose solutions to integrate it into existing medical education frameworks.
引用
收藏
页码:1565 / 1570
页数:6
相关论文
共 23 条
[1]  
Accreditation Council for Graduate Medical Education, 2022, ACGME HOM
[2]  
Agrawal S, 2017, HARVARD BUSINESS REV
[3]  
[Anonymous], STANDARDS PUBLICATIO
[4]  
Association of American Medical Colleges, 2016, LIAIS COMM MED ED LC
[5]   Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes [J].
Diao, James A. ;
Wang, Jason K. ;
Chui, Wan Fung ;
Mountain, Victoria ;
Gullapally, Sai Chowdary ;
Srinivasan, Ramprakash ;
Mitchell, Richard N. ;
Glass, Benjamin ;
Hoffman, Sara ;
Rao, Sudha K. ;
Maheshwari, Chirag ;
Lahiri, Abhik ;
Prakash, Aaditya ;
McLoughlin, Ryan ;
Kerner, Jennifer K. ;
Resnick, Murray B. ;
Montalto, Michael C. ;
Khosla, Aditya ;
Wapinski, Ilan N. ;
Beck, Andrew H. ;
Elliott, Hunter L. ;
Taylor-Weiner, Amaro .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]  
Gaur, 2021, SPRINGER, DOI [10.1007/978-981-16-6768-8, DOI 10.1007/978-981-16-6768-8]
[7]   Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing [J].
Henry, Katharine E. ;
Adams, Roy ;
Parent, Cassandra ;
Soleimani, Hossein ;
Sridharan, Anirudh ;
Johnson, Lauren ;
Hager, David N. ;
Cosgrove, Sara E. ;
Markowski, Andrew ;
Klein, Eili Y. ;
Chen, Edward S. ;
Saheed, Mustapha O. ;
Henley, Maureen ;
Miranda, Sheila ;
Houston, Katrina ;
Linton, Robert C., II ;
Ahluwalia, Anushree R. ;
Wu, Albert W. ;
Saria, Suchi .
NATURE MEDICINE, 2022, 28 (07) :1447-+
[8]  
Huang Xiaoli, 2006, AMIA Annu Symp Proc, P359
[9]   Digital Pathology: Advantages, Limitations and Emerging Perspectives [J].
Jahn, Stephan W. ;
Plass, Markus ;
Moinfar, Farid .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (11)
[10]   Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine [J].
Lee, Peter ;
Bubeck, Sebastien ;
Petro, Joseph .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (13) :1233-1239