Monte Carlo Estimation of CoVaR

被引:1
作者
Huang, Weihuan [1 ]
Lin, Nifei [2 ]
Hong, L. Jeff [3 ,4 ]
机构
[1] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
systemic risk; CoVaR; Monte Carlo simulation; batching; delta-gamma approximation; importance sampling; statistical analysis; VALUE-AT-RISK; SYSTEMIC RISK; CONTAGION;
D O I
10.1287/opre.2023.0211
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
CoVaR is one of the most important measures of financial systemic risks. It is defined as the risk of a financial portfolio conditional on another financial portfolio being at risk. In this paper we first develop a Monte Carlo simulation-based batching estimator of CoVaR and study its consistency and asymptotic normality. We show that the best rate of convergence that the batching estimator can achieve is n(-1/3), where n is the sample size. We then develop an importance sampling-inspired estimator under the delta-gamma approximations to the portfolio losses and show that the best rate of convergence that the estimator can achieve is n(-1/2). Numerical experiments support our theoretical findings and show that both estimators work well.
引用
收藏
页码:2337 / 2357
页数:22
相关论文
共 36 条
[1]   CoVaR [J].
Adrian, Tobias ;
Brunnermeier, Markus K. .
AMERICAN ECONOMIC REVIEW, 2016, 106 (07) :1705-1741
[2]  
Bernardi M, 2014, Arxiv, DOI arXiv:1312.6407
[3]   Non-Gaussian models for CoVaR estimation [J].
Bianchi, Michele Leonardo ;
De Luca, Giovanni ;
Rivieccio, Giorgia .
INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) :391-404
[4]   A Survey of Systemic Risk Analytics [J].
Bisias, Dimitrios ;
Flood, Mark ;
Lo, Andrew W. ;
Valavanis, Stavros .
ANNUAL REVIEW OF FINANCIAL ECONOMICS, VOL 4, 2012, 4 :255-296
[5]  
Cao Z., 2013, Multi-CoVaR and Shapley Value: a systemic risk measure
[6]   Confidence Intervals for Quantiles When Applying Variance-Reduction Techniques [J].
Chu, Fang ;
Nakayama, Marvin K. .
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2012, 22 (02)
[7]   Nonlinear portfolio selection using approximate parametric Value-at-Risk [J].
Cui, Xueting ;
Zhu, Shushang ;
Sun, Xiaoling ;
Li, Duan .
JOURNAL OF BANKING & FINANCE, 2013, 37 (06) :2124-2139
[8]  
David HA, 1998, HANDB STAT, V16, P487, DOI 10.1016/S0169-7161(98)16020-0
[9]  
Duffie D., 1997, J DERIV, V4, P7, DOI [DOI 10.3905/JOD.1997.407971, 10.3905/jod.1997.407971]
[10]  
Durrett R., 2019, PROBABILITY THEORY E, V49