A note on Pk-decomposition of the Kneser graph

被引:0
作者
Sahai, C. Cecily [1 ]
Kumar, S. Sampath [1 ]
Jose, T. Arputha [1 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Dept Math, Chennai, Tamil Nadu, India
关键词
Kneser graph; path decomposition; tensor product of graphs; wreath product of graphs; PATHS;
D O I
10.1142/S1793830924500587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, it is shown that if n equivalent to 0, 1, 2, 3(mod 4k), then the Kneser graph K(n, 2) is P-k-decomposable.
引用
收藏
页数:5
相关论文
共 20 条
[1]  
Balakrishnan R., 2000, UNIVERSITEX
[2]  
Baranyai Zs., 1975, C MATH SOC JANOS BOL, V10, P91
[3]   Short proof that Kneser graphs are Hamiltonian for n ≥ 4k [J].
Bellmann, Johann ;
Schulke, Bjarne .
DISCRETE MATHEMATICS, 2021, 344 (07)
[4]  
Bondy A., 2008, Graph Theory, DOI [DOI 10.1007/978-1-84628-970-5, 10.1007/978-1-84628-970-5]
[5]   HAMILTONIAN UNIFORM SUBSET GRAPHS [J].
CHEN, BL ;
LIH, KW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (03) :257-263
[6]   Triangle-free Hamiltonian Kneser graphs [J].
Chen, YC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (01) :1-16
[7]   Hamiltonian Kneser graphs [J].
Chen, YC ;
Füredi, Z .
COMBINATORICA, 2002, 22 (01) :147-149
[8]   Kneser graphs are Hamiltonian for n ≥ 3k [J].
Chen, YC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) :69-79
[9]   Binomial and Q-binomial coefficient inequalities related to the Hamiltonicity of the Kneser graphs and their Q-analogues [J].
Clark, WE ;
Ismail, MEH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) :83-98
[10]   Existence of a P2k+1-decomposition in the Kneser graph KGt,2 [J].
Ganesamurthy, S. ;
Paulraja, P. .
DISCRETE MATHEMATICS, 2018, 341 (07) :2113-2116