Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber (Cucumis sativus L.)

被引:1
|
作者
Yang, Kankan [1 ,2 ]
Zhou, Geng [3 ]
Chen, Chen [3 ]
Liu, Xiaohong [3 ]
Wei, Lin [2 ]
Zhu, Feiying [2 ]
Liang, Zhihuai [2 ]
Chen, Huiming [1 ,3 ]
机构
[1] Hunan Univ, Grad Sch, Longping Branch, Changsha, Peoples R China
[2] Hunan Acad Agr Sci, Changsha, Peoples R China
[3] Hunan Acad Agr Sci, Hunan Vegetable Res Inst, Changsha, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
cucumber; Fusarium wilt; metabolomic; RNA-seq; phenolic acid; flavonoids; F-SP CUCUMERINUM; SALICYLIC-ACID; CONFERRING RESISTANCE; BIOSYNTHESIS; OXYSPORUM; GROWTH; SOIL; EXPRESSION; TOMATO; GENE;
D O I
10.3389/fpls.2024.1447860
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction: Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease in cucumber (Cucumis sativus. L). However, there remains limited knowledge on the molecular mechanisms underlying FW resistance-mediated defense responses in cucumber. Methods: In this study, metabolome and transcriptome profiling were carried out for two FW resistant (NR) and susceptible (NS), near isogenic lines (NILs) before and after Foc inoculation. NILs have shown consistent and stable resistance in multiple resistance tests conducted in the greenhouse and in the laboratory. A widely targeted metabolomic analysis identified differentially accumulated metabolites (DAMs) with significantly greater NR accumulation in response to Foc infection, including many phenolic acid and flavonoid compounds from the flavonoid biosynthesis pathway. Results: Transcriptome analysis identified differentially expressed genes (DEGs) between the NILs upon Foc inoculation including genes for secondary metabolite biosynthesis and transcription factor genes regulating the flavonoid biosynthesis pathway. Joint analysis of the metabolomic and transcriptomic data identified DAMs and DEGs closely associated with the biosynthesis of phenolic acid and flavonoid DAMs. The association of these compounds with NR-conferred FW resistance was exemplified by in vivo assays. These assays found two phenolic acid compounds, bis (2-ethylhexyl) phthalate and diisooctyl phthalate, as well as the flavonoid compound gallocatechin 3-O-gallate to have significant inhibitory effects on Foc growth. The antifungal effects of these three compounds represent a novel finding. Discussion: Therefore, phenolic acids and flavonoids play important roles in NR mediated FW resistance breeding in cucumber.
引用
收藏
页数:15
相关论文
共 50 条
  • [2] Foliar Aspersion of Salicylic Acid Improves Phenolic and Flavonoid Compounds, and Also the Fruit Yield in Cucumber (Cucumis sativus L.)
    Preciado-Rangel, Pablo
    Jose Reyes-Perez, Juan
    Citlaly Ramirez-Rodriguez, Silvia
    Salas-Perez, Lilia
    Fortis-Hernandez, Manuel
    Murillo-Amador, Bernardo
    Troyo-Dieguez, Enrique
    PLANTS-BASEL, 2019, 8 (02):
  • [3] Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.)
    Jiri Simek
    Jiri Tuma
    Vlastimil Dohnal
    Karel Musil
    Zuzana Ducaiová
    Acta Physiologiae Plantarum, 2016, 38
  • [4] Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.)
    Simek, Jiri
    Tuma, Jiri
    Dohnal, Vlastimil
    Musil, Karel
    Ducaiova, Zuzana
    ACTA PHYSIOLOGIAE PLANTARUM, 2016, 38 (07)
  • [5] Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber (Cucumis sativus L.)
    Sun, Shuangsheng
    Yang, Zhengkun
    Song, Zhiyu
    Wang, Nannan
    Guo, Ning
    Niu, Jinghan
    Liu, Airong
    Bai, Bing
    Ahammed, Golam Jalal
    Chen, Shuangchen
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Enhancing in vitro regeneration via somatic embryogenesis and Fusarium wilt resistance of Egyptian cucumber ( Cucumis sativus L.) cultivars
    Hamza, Hamdy M.
    Diab, Rana H.
    Khatab, Ismael A.
    Gaafar, Reda M.
    Elhiti, Mohamed
    JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY, 2024, 22 (01):
  • [7] QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)
    Sakata, Y
    Kubo, N
    Morishita, M
    Kitadani, E
    Sugiyama, M
    Hirai, M
    THEORETICAL AND APPLIED GENETICS, 2006, 112 (02) : 243 - 250
  • [8] QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)
    Y. Sakata
    N. Kubo
    M. Morishita
    E. Kitadani
    M. Sugiyama
    M. Hirai
    Theoretical and Applied Genetics, 2006, 112 : 243 - 250
  • [9] QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)
    Y. Sakata
    N. Kubo
    M. Morishita
    E. Kitadani
    M. Sugiyama
    M. Hirai
    Theoretical and Applied Genetics, 2006, 112 : 986 - 986
  • [10] Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates
    S.F. Ye
    J.Q. Yu
    Y.H. Peng
    J.H. Zheng
    L.Y. Zou
    Plant and Soil, 2004, 263 : 143 - 150