Photocatalytic CO2-to-CH4 Conversion with Ultrahigh Selectivity of 95.93% on S-Vacancy Modulated Spatial In2S3/In2O3 Heterojunction

被引:65
作者
Lai, Kezhen [1 ,2 ]
Sun, Yuxin [1 ,2 ]
Li, Ning [1 ,2 ]
Gao, Yangqin [1 ,2 ]
Li, Hui [3 ]
Ge, Lei [1 ,2 ]
Ma, Tianyi [3 ]
机构
[1] China Univ Petr, Coll New Energy & Mat, State Key Lab Heavy Oil Proc, 18 Fuxue Rd, Beijing 102249, Peoples R China
[2] China Univ Petr, Coll New Energy & Mat, Dept Mat Sci & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
[3] RMIT Univ, Ctr Atomaterials & Nanomfg CAN, Sch Sci, Melbourne, Vic 3000, Australia
基金
国家重点研发计划; 澳大利亚研究理事会; 中国国家自然科学基金;
关键词
In2S3/In2O3; heterojunctions; selective CH4 production; vacancy modulated photoreduction; CO2; REDUCTION; FUELS; SITES;
D O I
10.1002/adfm.202409031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic conversion of CO2 to methane faces challenges due to the stability of CO2, unpredictable intermediates, and complex electron transfer steps. Herein, a spatial In2S3/In2O3 heterojunction with abundant S vacancies (ISIO(V-S)) is obtained through facile Polyvinylpyrrolidone (PVP) treatment to reach a methane yield of 16.52 mu mol<middle dot>g(-1)<middle dot>h(-1) with a selectivity of 95.93%, which is the highest among reported In2S3 and In2O3 based catalysts. The work function (W-f), differential charge density, and Kelvin Probe Force Microscopy (KPFM) results confirm that S vacancies strengthen the built-in electric field (BEF) of In2S3/In2O3 (ISIO) heterojunctions, improving carrier separation. Density functional theory (DFT) calculations reveal that S vacancies induce electron redistribution, facilitating adsorption and activation of CO2 and *CO intermediate, thus promoting hydrogenation to yield *CHO. The reaction pathway of photocatalytic CO2 reduction is revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Gibbs free energy (Delta G). The S vacancies modify electronic orbitals and the highest occupied molecular orbital (HOMO) of In atom, resulting in a stronger interaction between the catalyst and *CHO, which reduces Delta G(*CHO) and regulates the selectivity of CH4. This study paves a new avenue for the design of photocatalysts with highly selective reduction of CO2 to CH4 through defect engineering.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Facile and Controllable Modification of 3D In2O3 Microflowers with In2S3 Nanoflakes for Efficient Photocatalytic Degradation of Gaseous ortho-Dichlorobenzene [J].
Zhang, Fei ;
Li, Xinyong ;
Zhao, Qidong ;
Chen, Aicheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (34) :19113-19123
[32]   Photocatalytic Conversion of CO2 to CO with a p-n Heterojunction Based on Core-Shell β-Ga2O3@CoGa2O4 Nanorods [J].
Liu, Rongrong ;
Li, Li ;
Wang, Qiang ;
Lu, Jiaxue ;
Liang, Jun .
ACS APPLIED NANO MATERIALS, 2024, 7 (05) :5308-5316
[33]   Fabricated S-scheme BiOBr/Cu2O heterojunction photocatalyst for adjusting conversion of CO2 to CH4 [J].
Yan, Chenlong ;
Xu, Mengyang ;
Cao, Wangye ;
Chen, Qidi ;
Song, Xianghai ;
Huo, Pengwei ;
Zhou, Weiqiang ;
Wang, Huiqin .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06)
[34]   In2O3 crystal phase variation on In2O3/Co3O4 to boost CO2 hydrogenation to methanol [J].
Lin, Daifeng ;
Shen, Qinhui ;
Tang, YanXi ;
Zhang, Minghan ;
Li, Wei ;
Zhuo, Qian ;
Yang, Wenqing ;
Luo, Yongjin ;
Qian, Qingrong ;
Chen, Qinghua .
MOLECULAR CATALYSIS, 2024, 557
[35]   The synergy of low S-vacancy and Cu sites in Cu-In 4 SnS 8 promotes the favorable conversion of CO 2 to ethanol with full selectivity [J].
Huang, Fuxia ;
Jiao, Zihao ;
Wang, Feng ;
Liu, Ya ;
Guo, Liejin .
CHEMICAL ENGINEERING JOURNAL, 2024, 495
[36]   In-situ constructed Cu2S/TiO2 Schottky junction for charge redistribution and CO2 activation toward enhanced photocatalytic CO2-to-CH4 conversion [J].
Wang, Xin ;
Zhang, Xiu ;
Zhao, Dan ;
Chen, Wei ;
Bai, Yan ;
Shangguan, Wenfeng .
MATERIALS TODAY CHEMISTRY, 2025, 47
[37]   BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO [J].
Wang, Xianying ;
Wang, Yingshu ;
Gao, Meichao ;
Shen, Jinni ;
Pu, Xipeng ;
Zhang, Zizhong ;
Lin, Huaxiang ;
Wang, Xuxu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
[38]   Resolving Charge Recombination and Intermediate Stabilization: A Rational Design of In2O3/TiO2 S-Scheme Heterojunction for Efficient CH4 Production [J].
Sun, Ming ;
Ma, Yuerui ;
Tan, Yuwei ;
Wang, Jiacheng ;
Mi, Guohua ;
Luo, Jingying ;
Wang, Chunhui ;
Tong, Xin ;
Zhao, Xiaoli ;
Chen, Peng ;
Huang, Ming .
SUSMAT, 2025,
[39]   Carbon and nitrogen co-doped In2O3 porous nanosheets with oxygen vacancies for remarkable photocatalytic CO2 conversion [J].
Yu, Xinyan ;
Chen, Yajie ;
Zhang, Qiuyu ;
Yin, Yuejia ;
Sun, Dan ;
Ru, Yaxin ;
Tian, Guohui .
SURFACES AND INTERFACES, 2023, 38
[40]   Z-Scheme Core-Shell meso-TiO2@ZnIn2S4/Ti3C2 MXene Enhances Visible Light-Driven CO2-to-CH4 Selectivity [J].
Wang, Ke ;
Li, Xianhe ;
Wang, Nan ;
Shen, Quanhao ;
Liu, Maochang ;
Zhou, Jiancheng ;
Li, Naixu .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (24) :8720-8732