Data-driven cold starting of good reservoirs

被引:2
作者
Grigoryeva, Lyudmila [1 ,2 ]
Hamzi, Boumediene [3 ,4 ,8 ]
Kemeth, Felix P. [4 ]
Kevrekidis, Yannis [4 ]
Manjunath, G. [5 ]
Ortega, Juan-Pablo [5 ,6 ]
Steynberg, Matthys J. [7 ]
机构
[1] Univ Sankt Gallen, Fac Math & Stat, Bodanstr 6, CH-9000 St Gallen, Switzerland
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, England
[3] Caltech, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[5] Univ Pretoria, Dept Math & Appl Math, ZA-0028 Pretoria, South Africa
[6] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore, Singapore
[7] Univ Pretoria, Dept Phys, ZA-0028 Pretoria, South Africa
[8] Alan Turing Inst, London, England
关键词
Reservoir computing; Generalized synchronization; Starting map; Forecasting; Path continuation; Dynamical systems; ECHO STATE NETWORKS; FADING-MEMORY; CHAOTIC SYSTEMS; SYNCHRONIZATION; OPERATORS;
D O I
10.1016/j.physd.2024.134325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using short histories of observations from a dynamical system, a workflow for the post-training initialization of reservoir computing systems is described. This strategy is called cold-starting, and it is based on a map called the starting map, which is determined by an appropriately short history of observations that maps to a unique initial condition in the reservoir space. The time series generated by the reservoir system using that initial state can be used to run the system in autonomous mode in order to produce accurate forecasts of the time series under consideration immediately. By utilizing this map, the lengthy "washouts"that are necessary to initialize reservoir systems can be eliminated, enabling the generation of forecasts using any selection of appropriately short histories of the observations.
引用
收藏
页数:12
相关论文
共 58 条
[1]  
Abraham R., 1988, Applied Mathematical Sciences, DOI 10.1007/978-1-4612-1029-0
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]   A Hybrid Approach to Atmospheric Modeling That Combines Machine Learning With a Physics-Based Numerical Model [J].
Arcomano, Troy ;
Szunyogh, Istvan ;
Wikner, Alexander ;
Pathak, Jaideep ;
Hunt, Brian R. ;
Ott, Edward .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (03)
[4]   Learning Theory for Dynamical Systems [J].
Berry, Tyrus ;
Das, Suddhasattwa .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03) :2082-2122
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[7]  
Canaday D, 2021, Arxiv, DOI arXiv:2110.03722
[8]   Graph Laplacian tomography from unknown random projections [J].
Coifman, Ronald R. ;
Shkolnisky, Yoel ;
Sigworth, Fred J. ;
Singer, Amit .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1891-1899
[9]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[10]   PSEUDO-ORBIT SHADOWING IN THE FAMILY OF TENT MAPS [J].
COVEN, EM ;
KAN, I ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (01) :227-241