Predicting Post-surgery Discharge Time in Pediatric Patients Using Machine Learning

被引:0
作者
Cascella, Marco [1 ]
Guerra, Cosimo [1 ]
Atanasov, Atanas G. [2 ,3 ,4 ]
Calevo, Maria G. [5 ]
Piazza, Ornella [1 ]
Vittori, Alessandro [6 ]
Simonini, Alessandro [7 ]
机构
[1] Univ Salerno, Dept Med Surg & Dent Scuola Med Salernitana, Anesthesia & Pain Med, I-84081 Baronissi, Italy
[2] Polish Acad Sci, Inst Genet & Anim Biotechnol, PL-05552 Jastrzebiec, Magdalenka, Poland
[3] Saveetha Med Coll & Hosp, Saveetha Inst Med & Tech Sci SIMATS, Ctr Global Hlth Res, Lab Nat Prod & Med Chem LNPMC, Chennai, India
[4] Med Univ Vienna, Ludwig Boltzmann Inst Digital Hlth & Patient Safet, Spitalgasse 23, A-1090 Vienna, Austria
[5] IRCCS Ist Giannina Gaslini, Epidemiol & Biostat Unit, Sci Direct, Genoa, Italy
[6] Osped Pediatr Bambino Gesu IRCCS, Dept Anesthesia & Crit Care, ARCO ROMA, Piazza S Onofrio 4, I-00165 Rome, Italy
[7] Salesi Childrens Hosp, Pediat Anesthesia & Intens Care Unit AOU Marche, I-60121 Ancona, Italy
来源
TRANSLATIONAL MEDICINE AT UNISA | 2024年 / 26卷 / 01期
关键词
Machine learning; Artificial fi cial intelligence; Tonsillectomy; Random forest; Postoperative nausea and vomiting; HOSPITAL STAY; CHILDREN; LENGTH; TONSILLECTOMY; RECOVERY; LONG;
D O I
10.37825/2239-9747.1055
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: : Prolonged hospital stays after pediatric surgeries, such as tonsillectomy and adenoidectomy, pose significant fi cant concerns regarding cost and patient care. Dissecting the determinants of extended hospitalization is crucial for optimizing postoperative care and resource allocation. Objective: : This study aims to utilize machine learning (ML) techniques to predict post-surgery discharge times in pediatric patients and identify key variables influencing fluencing hospital stays. Methods: : The study analyzed data from 423 children who underwent tonsillectomy and/or adenoidectomy at the IRCCS Istituto Giannina Gaslini, Genoa, Italy. Variables included demographic factors, anesthesia-related details, and postoperative events. Preprocessing involved handling missing values, detecting outliers, and converting categorical variables to numerical classes. Univariate statistical analyses identified fied features correlated with discharge time. Four ML algorithms-Random Forest (RF), Logistic Regression, RUSBoost, and AdaBoost-were trained and evaluated using stratified fi ed 10-fold cross-validation. Results: : Significant fi cant predictors of delayed discharge included postoperative nausea and vomiting (PONV), continuous infusion of dexmedetomidine, fentanyl use, pain during discharge, and extubation time. The best-performing model, AdaBoost, demonstrated high accuracy and reliable prediction capabilities, with strong performance metrics across all evaluation criteria. Conclusion: : ML models can effectively predict discharge times and highlight critical factors impacting prolonged hospitalization. These insights can enhance postoperative care strategies and resource management in pediatric surgical settings. Future research should explore integrating these predictive models into clinical practice for real-time decision support.
引用
收藏
页数:14
相关论文
共 36 条
[1]   Exploring the current and prospective role of artificial intelligence in disease diagnosis [J].
Aamir, Ali ;
Iqbal, Arham ;
Jawed, Fareeha ;
Ashfaque, Faiza ;
Hafsa, Hafiza ;
Anas, Zahra ;
Oduoye, Malik Olatunde ;
Basit, Abdul ;
Ahmed, Shaheer ;
Abdul Rauf, Sameer ;
Khan, Mushkbar ;
Mansoor, Tehreem .
ANNALS OF MEDICINE AND SURGERY, 2024, 86 (02) :943-949
[2]  
Alkhawaldeh Ibraheem M, 2023, World J Methodol, V13, P373, DOI 10.5662/wjm.v13.i5.373
[3]  
Bellini Valentina, 2022, Acta Biomed, V93, pe2022297, DOI 10.23750/abm.v93i5.13626
[4]   Clinicosocial determinants of hospital stay following cervical decompression: A public healthcare perspective and machine learning model [J].
Biswas, Sayan ;
Bin Aizan, Luqman Naim ;
Mathieson, Katie ;
Neupane, Prashant ;
Snowdon, Ella ;
Macarthur, Joshua ;
Sarkar, Ved ;
Tetlow, Callum ;
George, K. Joshi .
JOURNAL OF CLINICAL NEUROSCIENCE, 2024, 126 :1-11
[5]  
Blankespoor RJ, 2012, MINERVA ANESTESIOL, V78, P896
[6]   Variables affecting hospital length of stay: a scoping review [J].
Buttigieg, Sandra C. ;
Abela, Lorraine ;
Pace, Adriana .
JOURNAL OF HEALTH ORGANIZATION AND MANAGEMENT, 2018, 32 (03) :463-493
[7]   Bayesian Network Analysis for Prediction of Unplanned Hospital Readmissions of Cancer Patients with Breakthrough Cancer Pain and Complex Care Needs [J].
Cascella, Marco ;
Racca, Emanuela ;
Nappi, Anna ;
Coluccia, Sergio ;
Maione, Sabatino ;
Luongo, Livio ;
Guida, Francesca ;
Avallone, Antonio ;
Cuomo, Arturo .
HEALTHCARE, 2022, 10 (10)
[8]   Artificial Intelligence, Machine Learning, and Medicine: A Little Background Goes a Long Way Toward Understanding [J].
Cote, Mark P. ;
Lubowitz, James H. ;
Brand, Jefferson C. ;
Rossi, Michael J. .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2021, 37 (06) :1699-1702
[9]   A prospective study of the length of stay of 150 children following tonsillectomy and/or adenoidectomy [J].
Drake-Lee, A ;
Stokes, M .
CLINICAL OTOLARYNGOLOGY, 1998, 23 (06) :491-495
[10]   Mahalanobis distances for ecological niche modelling and outlier detection: implications of sample size, error, and bias for selecting and parameterising a multivariate location and scatter method [J].
Etherington, Thomas R. .
PEERJ, 2021, 9