Exploring the mechanisms of Cornus officinalis in the treatment of non-alcoholic steatohepatitis using network pharmacology, molecular docking and molecular dynamics simulations

被引:0
|
作者
Guo, Jiashi [1 ,2 ]
Wan, Jingyuan [2 ,3 ]
Wang, Ting [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 2, Dept Orthoped, Chongqing, Peoples R China
[2] Chongqing Med Univ, Dept Pharmacol, Chongqing, Peoples R China
[3] Chongqing Med Univ, Chongqing Key Lab Biochem & Mol Pharmacol, Chongqing, Peoples R China
关键词
Cornus officinalis; NASH; Network pharmacological; Molecular docking; Inflammation; BETA-SITOSTEROL;
D O I
10.1007/s42452-024-06124-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-alcoholic steatohepatitis (NASH) is a predominant metabolic liver disease, typically characterized by hepatic steatosis, oxidative stress, and inflammation. The traditional Chinese medicine Cornus officinalis possesses anti-inflammatory and hepatoprotective pharmacological properties and has shown ameliorative effects on NASH. however, its mechanism of action remains unclear. This study aims to elucidate the mechanisms by which C. officinalis ameliorates NASH. The active components of C. officinalis were analyzed using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the corresponding targets were predicted. Subsequently, the DisGeNET, GeneCards, and GEO databases were employed to identify NASH-related targets. Venn diagrams were used to intersect the C. officinalis targets with the NASH targets. Protein-protein interaction (PPI) networks were constructed using the STRING database, and PPI network analysis was performed using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), followed by molecular docking validation. Cornus officinalis was found to contain 20 major active ingredients corresponding to 672 potential targets, 61 of which overlapped with NASH targets. PPI network, GO, and KEGG pathway analyses identified four targets with the highest correlation, and molecular docking results indicated that the active ingredients of C. officinalis exhibited strong binding affinities to NASH targets. The treatment of NASH with C. officinalis is characterized by multiple active ingredients and multiple targets, underscoring the major advantage of traditional Chinese medicine in treating NASH.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Molecular mechanism of Yi-Qi-Yang-Yin-Ye against obesity in rats using network pharmacology, molecular docking, and molecular dynamics simulations
    Sun, Feifei
    Liu, Jinde
    Xu, Jingfei
    Tariq, Ali
    Wu, Yongning
    Li, Lin
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (01)
  • [32] Exploring the mechanisms of Yuanhu Zhitong oral liquid for primary dysmenorrhea through network pharmacology, molecular docking, and molecular dynamics simulation
    Zhang ChengRui
    Zhang DaiYan
    Gao Jin
    Cao ZhiMing
    Hu YuanJia
    生殖与发育医学(英文), 2024, 08 (03)
  • [33] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [34] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [35] Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations
    Cheng, Wei
    Zhang, Bo-Feng
    Chen, Na
    Liu, Qun
    Ma, Xin
    Fu, Xiao
    Xu, Min
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (02) : 1433 - 1451
  • [36] Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler
    Liu, Lingyu
    Jiao, Yu
    Yang, Mei
    Wu, Lei
    Long, Guohui
    Hu, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [37] Exploring the potential mechanisms of Acer tegmentosum Maxim in preventing alcoholic liver disease based on network pharmacology and molecular docking
    Wang, Jianan
    Jian, Aqing
    Cui, Mingxun
    Piao, Chunxiang
    Wang, Juan
    Mu, Baide
    Li, Guanhao
    Li, Hongmei
    NATURAL PRODUCT RESEARCH, 2024,
  • [38] Exploring the Potential Molecular Mechanism of the Shugan Jieyu Capsule in the Treatment of Depression through Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Liu, Zhiyao
    Huang, Hailiang
    Yu, Ying
    Jia, Yuqi
    Li, Lingling
    Shi, Xin
    Wang, Fangqi
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024, 20 (05) : 501 - 517
  • [39] Exploring the mechanisms of Yuanhu Zhitong oral liquid for primary dysmenorrhea through network pharmacology, molecular docking, and molecular dynamics simulation
    Zhang, Cheng-Rui
    Zhang, Dai-Yan
    Gao, Jin
    Cao, Zhi-Ming
    Hu, Yuan-Jia
    REPRODUCTIVE AND DEVELOPMENTAL MEDICINE, 2024, 8 (03) : 138 - 150
  • [40] Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update
    Di Pasqua, Laura Giuseppina
    Cagna, Marta
    Berardo, Clarissa
    Vairetti, Mariapia
    Ferrigno, Andrea
    BIOMEDICINES, 2022, 10 (01)