Effective elastic behavior analysis of three-layer quasicrystal composite plates

被引:0
|
作者
Wu, Yurun [1 ]
Li, Lianhe [1 ,2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Sch Math & Sci, Hohhot 010022, Peoples R China
[2] Inner Mongolia Appl Math Ctr, Hohhot 010022, Peoples R China
[3] Minist Educ, Key Lab Infinite Dimens Hamiltonian Syst & Its Alg, Hohhot 010022, Peoples R China
关键词
Mori-Tanaka model; General matrix approach; Inclusions; Decagonal symmetric 2D quasicrystal; Three-layer quasicrystal composite plates; PIEZOELECTRIC COMPOSITES; SPHEROIDAL INCLUSION; CRACK; MECHANICS; PHASE;
D O I
10.1016/j.physb.2024.416373
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, the effective elastic behavior of three-layer quasicrystal composite plates are forecasted. Firstly, effective properties of the first and third layers quasicrystal composite plates containing ellipsoidal inclusions are obtained according to the Mori-Tanaka model. Secondly, the three-layer composite plates effective behavior parameters are computed by employing the general matrix approach. The numerical examples reveal the influence of the inclusions geometry and volume fraction on the three-layer quasicrystal composite plates effective behavior parameters. The findings indicate that changing the elastic constants of the phason field and phononphason coupling field of inclusions will affect the effective behavior parameters of the three-layer quasicrystal composite plates. The increase in layers to some extent reduces the effective behavioral parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Numerical Analysis of Three-Layer Deep Tunnel Composite Structure
    Sun, Weiwei
    Min, Hongping
    Chen, Jianzhong
    Ruan, Chao
    Zhang, Yanjun
    Wang, Lei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01): : 223 - 239
  • [12] Elastic properties of the layers of three-layer particleboards
    Wilczynski, Arnold
    Kociszewski, Marek
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2012, 70 (1-3) : 357 - 359
  • [13] Electro-magneto-elastic analysis of a three-layer curved beam
    Arefi, Mohammad
    Zenkour, Ashraf M.
    SMART STRUCTURES AND SYSTEMS, 2017, 19 (06) : 695 - 703
  • [14] Regular asymptotic methods in calculations of three-layer plates
    Volokh, K.Yu.
    Journal of Applied Mathematics and Mechanics (English translation of Prikladnaya Matematika i Mekhanika), 1992, 56 (05):
  • [15] Effect of Layer Thickness on Thermal Stresses in Three-Layer Plates.
    Mikityuk, O.A.
    Kolevatov, Yu.A.
    Sentyurin, E.G.
    Fiziko-Khimicheskaya Mekhanika Materialov, 1975, 11 (01): : 79 - 81
  • [16] Orthogonal Experiment of Wave Absorption Property for Three-layer Absorbing Structure Composite Material Plates
    Deng, Jinglan
    Feng, Bing
    FUNCTIONAL MATERIALS AND NANOTECHNOLOGY, 2012, 496 : 317 - 320
  • [17] Coupled Vibrations of Viscoelastic Three-Layer Composite Plates. 1. Formulation of the Problem
    Ryabov, V. M.
    Yartsev, B. A.
    Parshina, L. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (03) : 320 - 328
  • [18] Coupled Vibrations of Viscoelastic Three-Layer Composite Plates. 2. Numerical Experiments
    Ryabov, V. M.
    Yartsev, B. A.
    Parshina, L. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2021, 54 (01) : 69 - 77
  • [19] Coupled Vibrations of Viscoelastic Three-Layer Composite Plates. 2. Numerical Experiments
    V. M. Ryabov
    B. A. Yartsev
    L. V. Parshina
    Vestnik St. Petersburg University, Mathematics, 2021, 54 : 69 - 77
  • [20] Coupled Vibrations of Viscoelastic Three-Layer Composite Plates. 1. Formulation of the Problem
    V. M. Ryabov
    B. A. Yartsev
    L. V. Parshina
    Vestnik St. Petersburg University, Mathematics, 2020, 53 : 320 - 328