Genome editing prospects for heat stress tolerance in cereal crops

被引:1
|
作者
Pandey, Saurabh [1 ]
Divakar, S. [2 ]
Singh, Ashutosh [3 ]
机构
[1] Guru Nanak Dev Univ, Dept Agr, Amritsar 143005, Punjab, India
[2] RPCAU, Dept Agr Biotechnol Biotechnol & Mol Biotechnol, CBSH, Samastipur 8481253, Bihar, India
[3] RPCAU, Ctr Adv Studies Climate Change, Pusa 848125, Bihar, India
关键词
Climate change; Heat stress; Cereal crops; Genome editing; CRISPR-Cas9; TRANSCRIPTION FACTOR; SHOCK-PROTEIN; TRITICUM-AESTIVUM; ENHANCES TOLERANCE; CONFERS HEAT; MOLECULAR REGULATION; ABIOTIC STRESSES; HIGH-TEMPERATURE; OVER-EXPRESSION; DROUGHT STRESS;
D O I
10.1016/j.plaphy.2024.108989
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stresstolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] CRISPR/Cas-based genome editing to improve abiotic stress tolerance in plants
    Hyun, Tae Kyung
    BOTANICA SERBICA, 2020, 44 (02) : 121 - 127
  • [12] Amino acids in regulation of abiotic stress tolerance in cereal crops: a review
    Romanenko, Kateryna O.
    Babenko, Lidia M.
    Kosakivska, Iryna V.
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (02) : 333 - 356
  • [13] Improving environmental stress resilience in crops by genome editing: insights from extremophile plants
    Kouhen, Mohamed
    Garcia-Caparros, Pedro
    Twyman, Richard M.
    Abdelly, Chedly
    Mahmoudi, Henda
    Schillberg, Stefan
    Debez, Ahmed
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2023, 43 (04) : 559 - 574
  • [14] Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing
    Rahman, Mehboob-ur
    Zulfiqar, Sana
    Raza, Muhammad Ahmad
    Ahmad, Niaz
    Zhang, Baohong
    CELLS, 2022, 11 (22)
  • [15] Enhancement of Heat and Drought Stress Tolerance in Rice by Genetic Manipulation: A Systematic Review
    Yang, Yingxue
    Yu, Jianping
    Qian, Qian
    Shang, Lianguang
    RICE, 2022, 15 (01)
  • [16] Advanced Genome Editing Technologies: Potentials and Prospects in Improvement of Sugar crops
    Amaresh, G.
    Nunavath, Aswini
    Appunu, C.
    Viswanathan, C.
    Kumar, Rajeev
    Gujjar, R. S.
    Manimekalai, R.
    SUGAR TECH, 2025, 27 (01) : 14 - 28
  • [17] Gene editing for tolerance to temperature stress in plants: A review
    Chakraborty, Anindita
    Choudhury, Swapnila
    Kar, Shikta Rani
    Deb, Promita
    Wylie, Stephen J.
    PLANT GENE, 2024, 37
  • [18] Modification of cereal plant architecture by genome editing to improve yields
    Huang, Xin
    Hilscher, Julia
    Stoger, Eva
    Christou, Paul
    Zhu, Changfu
    PLANT CELL REPORTS, 2021, 40 (06) : 953 - 978
  • [19] Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants
    Kaur, Navdeep
    Sharma, Shubham
    Hasanuzzaman, Mirza
    Pati, Pratap Kumar
    INTERNATIONAL JOURNAL OF GENOMICS, 2022, 2022
  • [20] CRISPR-Cas Genome Editing for Horticultural Crops Improvement: Advantages and Prospects
    Rukavtsova, Elena B. B.
    Zakharchenko, Natalia S. S.
    Lebedev, Vadim G. G.
    Shestibratov, Konstantin A. A.
    HORTICULTURAE, 2023, 9 (01)