Path integral solution for a Dirac particle in a Generalized Inverse Quadratic Yukawa potential

被引:1
作者
Aid, Salah Eddine [1 ,2 ]
Boukabcha, Hocine [3 ,4 ]
Bentridi, Salah Eddine [3 ,4 ]
机构
[1] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Dept Phys, POB 78, Chlef 02000, Ouled Fares, Algeria
[2] Hassiba Benbouali Univ Chlef, Lab Mech & Energy, POB 78, Chlef 02000, Ouled Fares, Algeria
[3] Khemis Miliana Univ, Lab Energy & Smart Syst, Khemis Miliana 44225, Algeria
[4] Khemis Miliana Univ, Dept Phys, Khemis Miliana 44225, Algeria
关键词
Generalized Inverse Quadratic Yukawa potential; Dirac equation; path integral; Space-time transformationl; Energy spectrum; Wavefunctions; EQUATION; TELLER;
D O I
10.1088/1402-4896/ad6f54
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, the analytical solutions of the Dirac equation with the spin and pseudospin symmetry for the Generalized Inverse Quadratic Yukawa (GIQY) potential have been investigated. The problem was approximately addressed using path integral formalism. We present the energy eigenvalues expression along with the upper and lower radial wave functions for any given k-state. The Schr & ouml;dinger solutions for the GIQY potential and Dirac's solutions for Kratzer potential, Yukawa potential, inversely quadratic Yukawa potential, and Coulomb potential have also been calculated and compared to results from previous investigations.
引用
收藏
页数:13
相关论文
共 39 条
  • [1] Klein-Gordon equation in higher dimensions via Feynman propagator with the modified second type Poschl-Teller potential
    AGhobrini
    Boukabcha, H.
    Ami, I
    [J]. INDIAN JOURNAL OF PHYSICS, 2024, 98 (13) : 4497 - 4504
  • [2] Topological Effects with Inverse Quadratic Yukawa Plus Inverse Square Potential on Eigenvalue Solutions
    Ahmed, Faizuddin
    [J]. GRAVITATION & COSMOLOGY, 2023, 29 (03) : 232 - 239
  • [3] Path integral treatment of a Klein Gordon particle with generalized inverse Quadratic Yukawa potential
    Aid, Salah Eddine
    Boukabcha, Hocine
    Hemis, Mohamed
    [J]. PHYSICA SCRIPTA, 2023, 98 (10)
  • [4] Aid SE., 2023, Indian J. Phys, V37, P1
  • [5] Scattering phase shift for relativistic exponential-type separable potentials
    Alhaidari, AD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (50): : 11273 - 11286
  • [6] Bound-state solutions of the Dirac equation for the Kratzer potential with pseudoscalar-Coulomb term
    Arda, Altug
    Sever, Ramazan
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (01)
  • [7] Ro-vibrational energies of the shifted Deng-Fan oscillator potential with Feynman path integral formalism
    Boukabcha, H.
    Hachama, M.
    Diaf, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 121 - 129
  • [8] Boukabcha H., 2023, Path Integral of Schrdingers Equation, DOI [10.5772/intechopen.112183, DOI 10.5772/INTECHOPEN.112183]
  • [9] Bouledjedj S, 2022, CAN J PHYS, V100, P493, DOI 10.1139/cjp-2022-0096
  • [10] Analytical approximations to the l-wave solutions of the Schrodinger equation with the Eckart potential
    Dong, Shi-Hai
    Qiang, Wen-Chao
    Sun, Guo-Hua
    Bezerra, V. B.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (34) : 10535 - 10540