Dual Attention-Based 3D U-Net Liver Segmentation Algorithm on CT Images

被引:0
|
作者
Zhang, Benyue [1 ,2 ]
Qiu, Shi [1 ]
Liang, Ting [3 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100408, Peoples R China
[3] Xi An Jiao Tong Univ, Dept Radiol, Affiliated Hosp 1, Xian 710119, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 07期
基金
中国博士后科学基金;
关键词
dual attention mechanisms; residual connection; 3D U-Net; CT; liver segmentation;
D O I
10.3390/bioengineering11070737
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The liver is a vital organ in the human body, and CT images can intuitively display its morphology. Physicians rely on liver CT images to observe its anatomical structure and areas of pathology, providing evidence for clinical diagnosis and treatment planning. To assist physicians in making accurate judgments, artificial intelligence techniques are adopted. Addressing the limitations of existing methods in liver CT image segmentation, such as weak contextual analysis and semantic information loss, we propose a novel Dual Attention-Based 3D U-Net liver segmentation algorithm on CT images. The innovations of our approach are summarized as follows: (1) We improve the 3D U-Net network by introducing residual connections to better capture multi-scale information and alleviate semantic information loss. (2) We propose the DA-Block encoder structure to enhance feature extraction capability. (3) We introduce the CBAM module into skip connections to optimize feature transmission in the encoder, reducing semantic gaps and achieving accurate liver segmentation. To validate the effectiveness of the algorithm, experiments were conducted on the LiTS dataset. The results showed that the Dice coefficient and HD95 index for liver images were 92.56% and 28.09 mm, respectively, representing an improvement of 0.84% and a reduction of 2.45 mm compared to 3D Res-UNet.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images
    Seenia Francis
    P. B. Jayaraj
    P. N. Pournami
    Manu Thomas
    Ajay Thoomkuzhy Jose
    Allen John Binu
    Niyas Puzhakkal
    Physical and Engineering Sciences in Medicine, 2022, 45 : 189 - 203
  • [42] LF-UNet: An Attention-Based U-Net for Retinal Vessel Segmentation
    Zhu, Xiaolong
    Zhang, Weihang
    Li, Huiqi
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [43] U-Net based automatic carotid plaque segmentation from 3D ultrasound images
    Zhou, Ran
    Ma, Wei
    Fenster, Aaron
    Ding, Mingyue
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [44] RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images
    Jiang, Linfeng
    Ou, Jiajie
    Liu, Ruihua
    Zou, Yangyang
    Xie, Ting
    Xiao, Hanguang
    Bai, Ting
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [45] Dual Encoder Attention U-net for nuclei segmentation
    Vahadane, Abhishek
    Atheeth, B.
    Majumdar, Shantanu
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3205 - 3208
  • [46] U-net Segmentation of Lung Cancer CT Scans for 3D Rendering
    Ismail, Hanin Monir
    McKee, Gerard T.
    2024 5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC 2024, 2024, : 35 - 40
  • [47] 3d U-Net with ROI Segmentation of Kidneys and Masses in CT Scans
    Mitchell, Connor
    Xing, Shuwei
    Fenster, Aaron
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2023, 2024, 14540 : 93 - 96
  • [48] An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans
    Golts, Alex
    Khapun, Daniel
    Shats, Daniel
    Shoshan, Yoel
    Gilboa-Solomon, Flora
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2021, 2022, 13168 : 103 - 115
  • [49] Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
    Woo, Boyeong
    Lee, Myungeun
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [50] A Segmentation Network Based on 3D U-Net for Automatic Renal Cancer Structure Segmentation in CTA Images
    Weng, Xin
    Hu, Zuquan
    Yang, Fan
    LESION SEGMENTATION IN SURGICAL AND DIAGNOSTIC APPLICATIONS, MICCAI 2022, CURIOUS 2022, KIPA 2022, MELA 2022, 2023, 13648 : 3 - 8