Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data

被引:0
作者
Andreani, Mila [1 ]
Candila, Vincenzo [2 ]
Petrella, Lea [2 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Sapienza Univ Rome, MEMOTEF Depart, Rome, Italy
来源
MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022 | 2022年
关键词
Value-at-risk; Quantile regression; Random Forests; Mixed data sampling;
D O I
10.1007/978-3-030-99638-3_3
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper we introduce the use of mixed-frequency variables in a quantile regression framework to compute high-frequency conditional quantiles by means of low-frequency variables. We merge the well-known Quantile Regression Forest algorithm and the recently proposed Mixed-Data-Sampling model to build a comprehensive methodology to jointly model complexity, non-linearity and mixed-frequencies. Due to the link between quantile and the Value-at-Risk (VaR) measure, we compare our novel methodology with the most popular ones in VaR forecasting.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range
    Chen, Cathy W. S.
    Gerlach, Richard
    Hwang, Bruce B. K.
    McAleer, Michael
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 557 - 574
  • [22] Value at risk estimation based on generalized quantile regression
    Wang, Yongqiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 674 - 678
  • [23] Value at risk estimation by quantile regression and kernel estimator
    Huang A.Y.
    Review of Quantitative Finance and Accounting, 2013, 41 (2) : 225 - 251
  • [24] Multifractality and value-at-risk forecasting of exchange rates
    Batten, Jonathan A.
    Kinateder, Harald
    Wagner, Niklas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 401 : 71 - 81
  • [25] Panel quantile regressions for estimating and predicting the value-at-risk of commodities
    Cech, Frantisek
    Barunik, Jozef
    JOURNAL OF FUTURES MARKETS, 2019, 39 (09) : 1167 - 1189
  • [26] Statistical Load Forecasting Using Optimal Quantile Regression Random Forest and Risk Assessment Index
    Aprillia, Happy
    Yang, Hong-Tzer
    Huang, Chao-Ming
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (02) : 1467 - 1480
  • [27] Estimating value at risk with semiparametric support vector quantile regression
    Jooyong Shim
    Yongtae Kim
    Jangtaek Lee
    Changha Hwang
    Computational Statistics, 2012, 27 : 685 - 700
  • [28] Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process
    Frezza, Massimiliano
    Bianchi, Sergio
    Pianese, Augusto
    COMPUTATIONAL MANAGEMENT SCIENCE, 2022, 19 (01) : 99 - 132
  • [29] Forecasting Value-at-Risk under Different Distributional Assumptions
    Braione, Manuela
    Scholtes, Nicolas K.
    ECONOMETRICS, 2016, 4 (01):
  • [30] Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process
    Massimiliano Frezza
    Sergio Bianchi
    Augusto Pianese
    Computational Management Science, 2022, 19 : 99 - 132