Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data

被引:0
|
作者
Andreani, Mila [1 ]
Candila, Vincenzo [2 ]
Petrella, Lea [2 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Sapienza Univ Rome, MEMOTEF Depart, Rome, Italy
来源
MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022 | 2022年
关键词
Value-at-risk; Quantile regression; Random Forests; Mixed data sampling;
D O I
10.1007/978-3-030-99638-3_3
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper we introduce the use of mixed-frequency variables in a quantile regression framework to compute high-frequency conditional quantiles by means of low-frequency variables. We merge the well-known Quantile Regression Forest algorithm and the recently proposed Mixed-Data-Sampling model to build a comprehensive methodology to jointly model complexity, non-linearity and mixed-frequencies. Due to the link between quantile and the Value-at-Risk (VaR) measure, we compare our novel methodology with the most popular ones in VaR forecasting.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall
    Candila, Vincenzo
    Gallo, Giampiero M.
    Petrella, Lea
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [2] Quantile forecasting with mixed-frequency data
    Lima, Luiz Renato
    Meng, Fanning
    Godeiro, Lucas
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1149 - 1162
  • [3] Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression*
    Chronopoulos, Ilias
    Raftapostolos, Aristeidis
    Kapetanios, George
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 22 (03) : 636 - 669
  • [4] Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information
    Xu, Yan
    Wang, Xinyu
    Liu, Hening
    FINANCE RESEARCH LETTERS, 2021, 43
  • [5] Value at Risk Forecasting Based on Quantile Regression for GARCH Models
    Lee, Sangyeol
    Noh, Jungsik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2010, 23 (04) : 669 - 681
  • [6] Commodity value-at-risk modeling: comparing RiskMetrics, historic simulation and quantile regression
    Steen, Marie
    Westgaard, Sjur
    Gjolberg, Ole
    JOURNAL OF RISK MODEL VALIDATION, 2015, 9 (02): : 49 - 78
  • [7] Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data
    So M.K.P.
    Xu R.
    Asia-Pacific Financial Markets, 2013, 20 (1) : 83 - 111
  • [8] Estimation of value-at-risk using single index quantile regression
    Christou, Eliana
    Grabchak, Michael
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2418 - 2433
  • [9] Quantile Uncertainty and Value-at-Risk Model Risk
    Alexander, Carol
    Maria Sarabia, Jose
    RISK ANALYSIS, 2012, 32 (08) : 1293 - 1308
  • [10] QUANTILE ESTIMATION FOR COMPUTING VALUE-AT-RISK
    Iorgulescu, Filip
    Stancu, Ion
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ACCOUNTING AND MANAGEMENT INFORMATION SYSTEMS (AMIS 2012), 2012, : 649 - 660