Let n>1and let R be a commutative ring with identity 1=0 and R[x(1),...,x(n)]n these to fall n-tuples of polynomials of the form(f(1),...,f(n)),wheref(1),...,f(n )is an element of R[x(1),...,x(n)].Wecallthesen-tuplesvector-polynomials. We define composition on R[x(1,)...,x(n)]n by g degrees f=(g(1)(f(1),...,f(n)),...,g(n)(f(1),...,f(n))),wheref=(f(1),...,f(n)),g=(g(1),...,g(n)) In this paper, we investigate vector-polynomials o fthe form f=(f(0),f(1)+x(2g1),...,f(n-1)+x(n)g(n-1)),