A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data

被引:0
|
作者
Chai, Hua [1 ]
Deng, Weizhen [1 ]
Wei, Junyu [1 ]
Guan, Ting [1 ]
He, Minfan [1 ]
Liang, Yong [3 ]
Li, Le [2 ,3 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
[2] Macau Univ Sci & Technol, Fac Innovat Engn, Macau 999078, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancer subtype identification; Multi-omics data; Contrastive learning; Bioinformatics; EXPRESSION; POLYMORPHISMS;
D O I
10.1007/s12539-024-00641-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering. Results By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review. Conclusions Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS.
引用
收藏
页码:966 / 975
页数:10
相关论文
共 50 条
  • [41] Comparative Evaluation of Machine Learning Models for Subtyping Triple-Negative Breast Cancer: A Deep Learning-Based Multi-Omics Data Integration Approach
    Yang, Shufang
    Wang, Zihu
    Wang, Changfu
    Li, Changbo
    Wang, Binjie
    JOURNAL OF CANCER, 2024, 15 (12): : 3943 - 3957
  • [42] Gene- and Pathway-Based Deep Neural Network for Multi-omics Data Integration to Predict Cancer Survival Outcomes
    Hao, Jie
    Masum, Mohammad
    Oh, Jung Hun
    Kang, Mingon
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2019, 2019, 11490 : 113 - 124
  • [43] Interactive gene identification for cancer subtyping based on multi-omics clustering
    Ye, Xiucai
    Shi, Tianyi
    Cui, Yaxuan
    Sakurai, Tetsuya
    METHODS, 2023, 211 : 61 - 67
  • [44] Deep neural network aided multi-omics drug response prediction for breast cancer
    Vishnusankar, A.
    Unniyattil, Abhinav
    Haneem, E. M.
    Abinas, V.
    Nazeer, K. A. Abdul
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [45] Classifying breast cancer using multi-view graph neural network based on multi-omics data
    Ren, Yanjiao
    Gao, Yimeng
    Du, Wei
    Qiao, Weibo
    Li, Wei
    Yang, Qianqian
    Liang, Yanchun
    Li, Gaoyang
    FRONTIERS IN GENETICS, 2024, 15
  • [46] A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data
    Salimy, Siamak
    Lanjanian, Hossein
    Abbasi, Karim
    Salimi, Mahdieh
    Najafi, Ali
    Tapak, Leili
    Masoudi-Nejad, Ali
    HELIYON, 2023, 9 (07)
  • [47] Multi-omics Data Integration Model based on Isomap and Convolutional Neural Network
    Alkhateeb, Abedalrhman
    ElKarami, Bashier
    Qattous, Hazem
    Al-refai, Abdullah
    AlAfeshat, Noor
    Shahrrava, Behnam
    Azzeh, Mohammad
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1381 - 1385
  • [48] Deep learning-based approaches for multi-omics data integration and analysis
    Ballard, Jenna L.
    Wang, Zexuan
    Li, Wenrui
    Shen, Li
    Long, Qi
    BIODATA MINING, 2024, 17 (01):
  • [49] GCEA: Contrastive-Enhanced Autoencoders with Adaptive Completion for Partial Multi-omics Integration in Cancer Subtyping
    Yu, Weiting
    Li, Zhimin
    Liang, Cheng
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 251 - 262
  • [50] Predicting bladder cancer prognosis by integrating multi-omics data through a transfer learning-based Cox proportional hazards network
    Hua Chai
    Zhongyue Zhang
    Yi Wang
    Yuedong Yang
    CCF Transactions on High Performance Computing, 2021, 3 : 311 - 319