A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data

被引:0
|
作者
Chai, Hua [1 ]
Deng, Weizhen [1 ]
Wei, Junyu [1 ]
Guan, Ting [1 ]
He, Minfan [1 ]
Liang, Yong [3 ]
Li, Le [2 ,3 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
[2] Macau Univ Sci & Technol, Fac Innovat Engn, Macau 999078, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancer subtype identification; Multi-omics data; Contrastive learning; Bioinformatics; EXPRESSION; POLYMORPHISMS;
D O I
10.1007/s12539-024-00641-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering. Results By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review. Conclusions Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS.
引用
收藏
页码:966 / 975
页数:10
相关论文
共 50 条
  • [31] Capsule Network Based Modeling of Multi-omics Data for Discovery of Breast Cancer-Related Genes
    Peng, Chen
    Zheng, Yang
    Huang, De-shuang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (05) : 1605 - 1612
  • [32] Identification of novel prognostic biomarkers by integrating multi-omics data in gastric cancer
    Nannan Liu
    Yun Wu
    Weipeng Cheng
    Yuxuan Wu
    Liguo Wang
    Liwei Zhuang
    BMC Cancer, 21
  • [33] Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis
    Qi, Lin
    Wang, Wei
    Wu, Tan
    Zhu, Lina
    He, Lingli
    Wang, Xin
    FRONTIERS IN GENETICS, 2021, 12
  • [34] Identification of novel prognostic biomarkers by integrating multi-omics data in gastric cancer
    Liu, Nannan
    Wu, Yun
    Cheng, Weipeng
    Wu, Yuxuan
    Wang, Liguo
    Zhuang, Liwei
    BMC CANCER, 2021, 21 (01)
  • [35] Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis
    Xiao, Shunxin
    Lin, Huibin
    Wang, Conghao
    Wang, Shiping
    Rajapakse, Jagath C.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (09) : 4591 - 4600
  • [36] Functional Analysis of Molecular Subtypes with Deep Similarity Learning Model Based on Multi-omics Data
    Liu, Shuhui
    Zhang Yupei
    Shang, Xuequn
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 126 - 137
  • [37] OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data
    Zhang, Xiaoyu
    Xing, Yuting
    Sun, Kai
    Guo, Yike
    CANCERS, 2021, 13 (12)
  • [38] Prediction of survival and recurrence in patients with pancreatic cancer by integrating multi-omics data
    Baek, Bin
    Lee, Hyunju
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data
    Zhao, Jing
    Zhao, Bowen
    Song, Xiaotong
    Lyu, Chujun
    Chen, Weizhi
    Xiong, Yi
    Wei, Dong-Qing
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [40] CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data
    Zhao, Chen
    Liu, Anqi
    Zhang, Xiao
    Cao, Xuewei
    Ding, Zhengming
    Sha, Qiuying
    Shen, Hui
    Deng, Hong-Wen
    Zhou, Weihua
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170