Ultralight Convolutional Neural Network for Automatic Modulation Classification in Internet of Unmanned Aerial Vehicles

被引:17
作者
Guo, Lantu [1 ,2 ]
Wang, Yu [3 ]
Liu, Yuchao [2 ,4 ]
Lin, Yun [5 ]
Zhao, Haitao [3 ]
Gui, Guan [3 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100811, Peoples R China
[2] China Res Inst Radiowave Propagat, Res Dept 5, Qingdao 266107, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[4] Beihang Univ, Sch Elect Informat Engn, Beijing 100191, Peoples R China
[5] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150000, Peoples R China
关键词
Convolution; Computational modeling; Modulation; Autonomous aerial vehicles; Training; Internet of Things; Feature extraction; Automatic modulation classification (AMC); deep learning (DL); resource-constrained unmanned aircraft vehicle (UAV) systems; ultralight convolutional neural network (ULCNN); DATA AUGMENTATION; RECOGNITION;
D O I
10.1109/JIOT.2024.3373497
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning (DL)-based automatic modulation classification (AMC) has made breakthroughs and is generally used for signal detection and recognition in wireless communication systems, unmanned aircraft vehicle (UAV) systems, and other fields. However, high storage and computational demands limit its use in resource-constrained UAV systems. This article presents an AMC method featuring a streamlined design with lower computational needs, using the ultralight convolutional neural network (ULCNN). This innovative model combines data augmentation, complex-valued convolution, separable convolution, channel attention, and shuffling techniques for enhanced performance. The proposed ULCNN model balances efficiency and accuracy, with simulations showing it achieves 62.47% accuracy on the RML2016.10a data set using only 9751 parameters. Furthermore, we evaluated the actual speed of ULCNN on a Raspberry Pi, an edge platform with roughly equivalent computing power to a conventional UAV, achieving an inference speed of only 0.775 ms per sample. This high performance, coupled with a significantly smaller model size, underscores the potential of ULCNN for integration into resource-constrained UAV systems, thereby enabling rapid and efficient data processing.
引用
收藏
页码:20831 / 20839
页数:9
相关论文
共 41 条
[1]   SigNet: A Novel Deep Learning Framework for Radio Signal Classification [J].
Chen, Zhuangzhi ;
Cui, Hui ;
Xiang, Jingyang ;
Qiu, Kunfeng ;
Huang, Liang ;
Zheng, Shilian ;
Chen, Shichuan ;
Xuan, Qi ;
Yang, Xiaoniu .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) :529-541
[2]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[3]   Survey of automatic modulation classification techniques: classical approaches and new trends [J].
Dobre, O. A. ;
Abdi, A. ;
Bar-Ness, Y. ;
Su, W. .
IET COMMUNICATIONS, 2007, 1 (02) :137-156
[4]   Lightweight Automatic Modulation Classification Based on Decentralized Learning [J].
Fu, Xue ;
Gui, Guan ;
Wang, Yu ;
Ohtsuki, Tomoaki ;
Adebisi, Bamidele ;
Gacanin, Haris ;
Adachi, Fumiyuki .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) :57-70
[5]   Hybrid Data Augmentation and Dual-Stream Spatiotemporal Fusion Neural Network for Automatic Modulation Classification in Drone Communications [J].
Gong, An ;
Zhang, Xingyu ;
Wang, Yu ;
Zhang, Yongan ;
Li, Mengyan .
DRONES, 2023, 7 (06)
[6]   A Two-Stage Model Based on a Complex-Valued Separate Residual Network for Cross-Domain IIoT Devices Identification [J].
Han, Guangjie ;
Xu, Zhengwei ;
Zhu, Hongbo ;
Ge, Yunlu ;
Peng, Jinlin .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) :2589-2599
[7]   Deep Neural Network for Robust Modulation Classification Under Uncertain Noise Conditions [J].
Hu, Shisheng ;
Pei, Yiyang ;
Liang, Paul Pu ;
Liang, Ying-Chang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) :564-577
[8]   Data Augmentation for Deep Learning-Based Radio Modulation Classification [J].
Huang, Liang ;
Pan, Weijian ;
Zhang, You ;
Qian, Liping ;
Gao, Nan ;
Wu, Yuan .
IEEE ACCESS, 2020, 8 :1498-1506
[9]   Automatic Modulation Classification Using Gated Recurrent Residual Network [J].
Huang, Sai ;
Dai, Rui ;
Huang, Juanjuan ;
Yao, Yuanyuan ;
Gao, Yue ;
Ning, Fan ;
Feng, Zhiyong .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) :7795-7807
[10]   MCNet: An Efficient CNN Architecture for Robust Automatic Modulation Classification [J].
Huynh-The, Thien ;
Hua, Cam-Hao ;
Pham, Quoc-Viet ;
Kim, Dong-Seong .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (04) :811-815