Ultra-low frequency noise external cavity diode laser systems for quantum applications

被引:2
作者
Kolodzie, Niklas [1 ,2 ]
Mirgorodskiy, Ivan [1 ]
Noelleke, Christian [1 ]
Schmidt, Piet o. [2 ,3 ]
机构
[1] TOPT Photon AG, Lochhamer Schlag 19, D-82166 Grafelfing, Germany
[2] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[3] Leibniz Univ Hannover, Inst Quantenopt, D-30167 Hannover, Germany
关键词
BRAGG-REFLECTOR LASER; OPTICAL FEEDBACK; SEMICONDUCTOR-LASERS; DFB-LASER; LINEWIDTH; PHASE; STABILIZATION; COMPACT; REDUCTION;
D O I
10.1364/OE.530087
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present two distinct ultra-low frequency noise lasers at 729 nm with a fast frequency noise of 30 Hz2/Hz, corresponding to a Lorentzian linewidth of 0.1 kHz. The characteristics of both lasers, which are based on different types of laser diodes, are investigated using experimental and theoretical analysis with a focus on identifying the advantages and disadvantages of each type of system. Specifically, we study the differences and similarities in mode behavior while tuning frequency noise and linewidth reduction. Furthermore, we demonstrate the locking capability of these systems on medium-finesse cavities. The results provide insights into the unique operational characteristics of these ultra-low noise lasers and their potential applications in quantum technology that require high levels of control fidelity.
引用
收藏
页码:29781 / 29794
页数:14
相关论文
共 68 条
[31]   EFFICIENT FREQUENCY NOISE-REDUCTION OF GAALAS SEMICONDUCTOR-LASERS BY OPTICAL FEEDBACK FROM AN EXTERNAL HIGH-FINESSE RESONATOR [J].
LI, H ;
TELLE, HR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (03) :257-264
[32]   ANALYSIS OF THE NOISE SPECTRA OF A LASER DIODE WITH OPTICAL FEEDBACK FROM A HIGH-FINESSE RESONATOR [J].
LI, H ;
ABRAHAM, NB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (08) :1782-1793
[33]   Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth [J].
Lin, Qian ;
Van Camp, Mackenzie A. ;
Zhang, Hao ;
Jelenkovic, Branislav ;
Vuletic, Vladan .
OPTICS LETTERS, 2012, 37 (11) :1989-1991
[34]   Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 X 10-15 [J].
Ludlow, A. D. ;
Huang, X. ;
Notcutt, M. ;
Zanon-Willette, T. ;
Foreman, S. M. ;
Boyd, M. M. ;
Blatt, S. ;
Ye, J. .
OPTICS LETTERS, 2007, 32 (06) :641-643
[35]   Optical atomic clocks [J].
Ludlow, Andrew D. ;
Boyd, Martin M. ;
Ye, Jun ;
Peik, E. ;
Schmidt, P. O. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :637-701
[36]   Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser [J].
Michaud-Belleau, V. ;
Bergeron, H. ;
Light, P. S. ;
Hebert, N. B. ;
Deschenes, J. D. ;
Luiten, A. N. ;
Genest, J. .
METROLOGIA, 2016, 53 (05) :1154-1164
[37]   Realization of a scalable Shor algorithm [J].
Monz, Thomas ;
Nigg, Daniel ;
Martinez, Esteban A. ;
Brandl, Matthias F. ;
Schindler, Philipp ;
Rines, Richard ;
Wang, Shannon X. ;
Chuang, Isaac L. ;
Blatt, Rainer .
SCIENCE, 2016, 351 (6277) :1068-1070
[38]  
Moses S.A., 2023, A Race Track Trapped-Ion Quantum Processor
[39]   Phase-locked, low-noise, frequency agile titanium:: sapphire lasers for simultaneous atom interferometers [J].
Müller, H ;
Chiow, SW ;
Long, Q ;
Chu, S .
OPTICS LETTERS, 2006, 31 (02) :202-204
[40]   Effect of fast noise on the fidelity of trapped-ion quantum gates [J].
Nakav, Haim ;
Finkelstein, Ran ;
Peleg, Lee ;
Akerman, Nitzan ;
Ozeri, Roee .
PHYSICAL REVIEW A, 2023, 107 (04)