Effect of Laser Peening on Surface Morphology and Deformation Level of Additively Manufactured 316L Stainless Steel

被引:1
作者
Mithal, Abeer [1 ,2 ]
Maharjan, Niroj [2 ]
Idapalapati, Sridhar [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Agcy Sci Technol & Res, Adv Remfg & Technol Ctr, 3 Cleantech Loop, Singapore 637143, Singapore
来源
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCED SURFACE ENHANCEMENT, INCASE 2023 | 2024年
关键词
Laser shock peening; Directed energy deposition; Surface enhancement; Materials characterization; EBSD; MICROSTRUCTURE; IMPACT;
D O I
10.1007/978-981-99-8643-9_10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser peening (LSP) is a surface enhancement technology that utilizes a short-pulsed laser to improve the fatigue life of components. With the advent of additive manufacturing (AM), there has been an interest in studying LSP of AM parts. In this experimental work, we examine the effect of LSP on the microstructure and surface morphology of AM 316L stainless steel. LSP at moderate and extreme peak power densities of 7.86 and 17.68 GW/cm(2) respectively, was performed on a 316L steel sample fabricated by directed energy deposition (DED). The samples were characterized for their surface morphology and near-surface microstructure using a range of analytical techniques. The results indicate that all LSP conditions had no significant effect on the surface topography or oxide level. When no ablative coating was used, the surface residual stress was tensile whilst with coating the surface residual stress state was compressive. The plastic strain (as measured by EBSD) was not significantly different for all LSP conditions. The use of extremely high peak power density (17.68 GW/cm(2)) showed no significant increment in plastic strain, hardness or surface residual stress compared to moderate peak power density (7.86 GW/cm(2)) possibly due to the dielectric breakdown of water. The findings indicate that a very high peak power density does not necessarily translate to larger peening effects and may not be required for material processing.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [41] Enhanced Corrosion Resistance of Additively Manufactured 316L Stainless Steel After Heat Treatment
    Zhou, Chengshuang
    Wang, Jing
    Hu, Shiyin
    Tao, Huimin
    Fang, Bei
    Li, Long
    Zheng, Jinyang
    Zhang, Lin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [42] Effect of Process Conditions on Mechanical and Metallurgical Properties of Wire Arc Additively Manufactured 316L Stainless Steel
    Kishor, Gaurav
    Mugada, Krishna Kishore
    Mahto, Raju Prasad
    Badheka, Vishvesh
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [43] Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions
    Al-Mamun, Nahid Sultan
    Deen, Kashif Mairaj
    Haider, Waseem
    Asselin, Edouard
    Shabib, Ishraq
    ADDITIVE MANUFACTURING, 2020, 34
  • [44] Influence of native oxide film on corrosion behavior of additively manufactured stainless steel 316L
    Choundraj, Jahnavi Desai
    Kelly, Robert G.
    Monikandan, Rebhadevi
    Singh, Preet M.
    Kacher, Josh
    CORROSION SCIENCE, 2023, 217
  • [45] Machine-to-machine variability of roughness and corrosion in additively manufactured 316L stainless steel
    Clark, C. L.
    Karasz, E. K.
    Melia, M.
    Hooks, D. E.
    Hackenberg, R.
    Colon-Mercado, H.
    Ganesan, P.
    Renner, P.
    Cho, S.
    Wu, M.
    Qiu, S. R.
    Dwyer, J.
    Rueger, Z.
    Gorey, T. J.
    Koehn, Z.
    Stull, J. A.
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 106 : 380 - 392
  • [46] Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
    Roach, Ashley M.
    White, Benjamin C.
    Garland, Anthony
    Jared, Bradley H.
    Carroll, Jay D.
    Boyce, Brad L.
    ADDITIVE MANUFACTURING, 2020, 32
  • [47] The Effect of Laser Shock Peening on Back Stress of Additively Manufactured Stainless Steel Parts
    Over, Veronica
    Donovan, Justin
    Lawrence Yao, Y.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (04):
  • [48] Anisotropic fatigue crack propagation in wire arc additively manufactured 316L stainless steel
    Ajay, V.
    Nakrani, Jignesh
    Mishra, Neeraj K.
    Shrivastava, Amber
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 177
  • [49] Enhancing corrosion resistance of additively manufactured 316L stainless steel by fabricating pillar arrays
    Liu, Qian
    Lu, Jiajun
    Luo, Zairan
    Yi, Jiang
    He, Minglin
    Zhao, Yonghua
    Wang, Shuai
    MATERIALS & DESIGN, 2023, 230
  • [50] Simultaneously Improving the Strength and Plasticity of Additively Manufactured 316L Stainless Steel by Adding Aluminum
    Tian, Hongsheng
    Li, Bochuan
    Yu, Mingxiong
    Huang, Sen
    Mao, Lizhong
    Li, Huaiyuan
    Wang, Kai
    Zhou, Zihao
    Zhu, Guo
    Xu, Kang
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (07)