Multi-Augmentation Contrastive Learning as Multi-Objective Optimization for Graph Neural Networks

被引:0
|
作者
Li, Xu [1 ]
Chen, Yongsheng [1 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II | 2023年 / 13936卷
关键词
graph neural networks; multi-objective Learning; self-supervised learning;
D O I
10.1007/978-3-031-33377-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently self-supervised learning is gaining popularity for Graph Neural Networks (GNN) by leveraging unlabeled data. Augmentation plays a key role in self-supervision. While there is a common set of image augmentation methods that preserve image labels in general, graph augmentation methods do not guarantee consistent graph semantics and are usually domain dependent. Existing self-supervised GNN models often handpick a small set of augmentation techniques that limit the performance of the model. In this paper, we propose a common set of graph augmentation methods to a wide range of GNN tasks, and rely on the Pareto optimality to select and balance among these possibly conflicting augmented versions, called Pareto Graph Contrastive Learning (PGCL) framework. We show that while random selection of the same set of augmentation leads to slow convergence or even divergence, PGCL converges much faster with lower error rate. Extensive experiments on multiple datasets of different domains and scales demonstrate superior or comparable performance of PGCL.
引用
收藏
页码:495 / 507
页数:13
相关论文
共 50 条
  • [1] Multi-objective sustainability optimization in modern supply chain networks: A hybrid approach with federated learning and graph neural networks
    Abushaega, Mastoor M.
    Moshebah, Osamah Y.
    Hamzi, Ahmed
    Alghamdi, Saleh Y.
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 115 : 585 - 602
  • [2] Multi-Relation Augmentation for Graph Neural Networks
    Xiao, Shunxin
    Lin, Huibin
    Wang, Jianwen
    Qin, Xiaolong
    Wang, Shiping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3614 - 3627
  • [3] Multi-channel Graph Neural Networks with Contrastive Learning for Social Recommendation
    Liu, Ping
    Yang, Jian
    2023 IEEE INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2023, : 32 - 39
  • [4] Convergence analysis of sliding mode trajectories in multi-objective neural networks learning
    Costa, Marcelo Azevedo
    Braga, Antonio Padua
    de Menezes, Benjamin Rodrigues
    NEURAL NETWORKS, 2012, 33 : 21 - 31
  • [5] Graph Contrastive Learning With Personalized Augmentation
    Zhang, Xin
    Tan, Qiaoyu
    Huang, Xiao
    Li, Bo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6305 - 6316
  • [6] MULTI-AUGMENTATION FOR EFFICIENT SELF-SUPERVISED VISUAL REPRESENTATION LEARNING
    Tran, Van Nhiem
    Huang, Chi-En
    Liu, Shen-Hsuan
    Yang, Kai-Lin
    Ko, Timothy
    Li, Yung-Hui
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [7] Multi-view Negative-Free Contrastive Learning on Adaptive Graph Augmentation
    Wang, Xingyue
    Liu, Huazhong
    Ding, Jihong
    Tan, Peng
    2024 IEEE 24TH INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID 2024, 2024, : 291 - 298
  • [8] Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems
    Shao, Yinan
    Lin, Jerry Chun-Wei
    Srivastava, Gautam
    Guo, Dongdong
    Zhang, Hongchun
    Yi, Hu
    Jolfaei, Alireza
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (04) : 2133 - 2143
  • [9] Multi-strategy adaptive data augmentation for Graph Neural Networks
    Juan, Xin
    Liang, Xiao
    Xue, Haotian
    Wang, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [10] An efficient multi-objective learning algorithm for RBF neural network
    Kokshenev, Illya
    Braga, Antonio Padua
    NEUROCOMPUTING, 2010, 73 (16-18) : 2799 - 2808