Low regularity global well-posedness of axisymmetric MHD equations with vertical dissipation and magnetic diffusion

被引:0
作者
Abidi, Hammadi [1 ]
Gui, Guilong [2 ]
Ke, Xueli [2 ,3 ]
机构
[1] Univ Tunis EI Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric MHD equations; Global well-posedness; Lorentz spaces; AXIALLY-SYMMETRIC FLOWS; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; SYSTEM; FLUIDS;
D O I
10.1016/j.jde.2024.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration in this paper is the global well-posedness for the 3D axisymmetric MHD equations with only vertical dissipation and vertical magnetic diffusion. The existence of unique low-regularity global solutions of the system with initial data in Lorentz spaces is established by using higher-order energy estimates and real interpolation method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:635 / 663
页数:29
相关论文
共 50 条
  • [41] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [42] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Xueting Jin
    Yuelong Xiao
    Huan Yu
    Acta Mathematica Scientia, 2022, 42 : 1293 - 1309
  • [43] On the global well-posedness and striated regularity of the 2D Boussinesq-MHD system
    Niu, Dongjuan
    Peng, Jiao
    Wang, Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2572 - 2595
  • [44] Global well-posedness of the three dimensional magnetohydrodynamics equations
    Wang, Yuzhu
    Wang, Keyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 245 - 251
  • [45] Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion
    Wang, Xinli
    Yu, Haiyang
    Wu, Tianfeng
    AIMS MATHEMATICS, 2024, 9 (12): : 34863 - 34885
  • [46] The 3D Incompressible Hall-MHD Equations: Global Well-Posedness
    Zhang, Nengqiu
    ACTA APPLICANDAE MATHEMATICAE, 2022, 178 (01)
  • [47] The 3D Incompressible Hall-MHD Equations: Global Well-Posedness
    Nengqiu Zhang
    Acta Applicandae Mathematicae, 2022, 178
  • [48] Global well-posedness of the 3D incompressible MHD equations with variable density
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-an
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 85 - 105
  • [49] Global well-posedness and decay to 3D MHD equations with nonlinear damping
    Li, Hongmin
    Xiao, Yuelong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [50] Global well-posedness of non-resistive quantum MHD system
    Wang, Sinan
    Zhou, Jianfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 436