Low regularity global well-posedness of axisymmetric MHD equations with vertical dissipation and magnetic diffusion

被引:0
作者
Abidi, Hammadi [1 ]
Gui, Guilong [2 ]
Ke, Xueli [2 ,3 ]
机构
[1] Univ Tunis EI Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric MHD equations; Global well-posedness; Lorentz spaces; AXIALLY-SYMMETRIC FLOWS; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; SYSTEM; FLUIDS;
D O I
10.1016/j.jde.2024.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration in this paper is the global well-posedness for the 3D axisymmetric MHD equations with only vertical dissipation and vertical magnetic diffusion. The existence of unique low-regularity global solutions of the system with initial data in Lorentz spaces is established by using higher-order energy estimates and real interpolation method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:635 / 663
页数:29
相关论文
共 50 条
  • [31] Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients
    Si, Xin
    Ye, Xia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [32] Global well-posedness for the viscous primitive equations of geophysics
    Sun, Jinyi
    Yang, Minghua
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 16
  • [33] LAGRANGIAN APPROACH TO GLOBAL WELL-POSEDNESS OF VISCOUS INCOMPRESSIBLE MHD EQUATIONS
    Liu, Caifeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2056 - 2080
  • [34] Global well-posedness for the 3-D generalized MHD equations
    Wang, Zhaoyang
    Liu, Hui
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [35] LOW REGULARITY GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER EQUATION ON CLOSED MANIFOLDS
    Akahori, Takafumi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) : 261 - 280
  • [36] Low regularity global well-posedness for 2D Boussinesq equations with variable viscosity
    Sun, Weixian
    Ye, Zhuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [37] Global well-posedness of 3-D nonhomogeneous incompressible MHD equations with bounded nonnegative density
    Xu, Fuyi
    Zhang, Mingxue
    Qiao, Liening
    Fu, Peng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [38] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [39] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Su, Xing
    Wang, Gangwei
    Wang, Yue
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [40] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Jin, Xueting
    Xiao, Yuelong
    Yu, Huan
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1293 - 1309