Low regularity global well-posedness of axisymmetric MHD equations with vertical dissipation and magnetic diffusion

被引:0
作者
Abidi, Hammadi [1 ]
Gui, Guilong [2 ]
Ke, Xueli [2 ,3 ]
机构
[1] Univ Tunis EI Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric MHD equations; Global well-posedness; Lorentz spaces; AXIALLY-SYMMETRIC FLOWS; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; SYSTEM; FLUIDS;
D O I
10.1016/j.jde.2024.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration in this paper is the global well-posedness for the 3D axisymmetric MHD equations with only vertical dissipation and vertical magnetic diffusion. The existence of unique low-regularity global solutions of the system with initial data in Lorentz spaces is established by using higher-order energy estimates and real interpolation method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:635 / 663
页数:29
相关论文
共 50 条
  • [1] Global well-posedness for axisymmetric MHD equations with vertical dissipation and vertical magnetic diffusion
    Wang, Peng
    Guo, Zhengguang
    NONLINEARITY, 2022, 35 (05) : 2147 - 2174
  • [2] GLOBAL REGULARITY FOR THE 3D AXISYMMETRIC MHD EQUATIONS WITH HORIZONTAL DISSIPATION AND VERTICAL MAGNETIC DIFFUSION
    Jiu, Quansen
    Liu, Jitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 301 - 322
  • [3] Global well-posedness and optimal decay for incompressible MHD equations with fractional dissipation and magnetic diffusion
    Jin, Meilin
    Jiu, Quansen
    Xie, Yaowei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [4] Global well-posedness for axisymmetric MHD system with only vertical viscosity
    Jiu, Quansen
    Yu, Huan
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2954 - 2990
  • [5] Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain
    Ren, Xiaoxia
    Xiang, Zhaoyin
    Zhang, Zhifei
    NONLINEARITY, 2016, 29 (04) : 1257 - 1291
  • [6] GLOBAL WELL-POSEDNESS OF THE MHD EQUATIONS IN A HOMOGENEOUS MAGNETIC FIELD
    Wei, Dongyi
    Zhang, Zhifei
    ANALYSIS & PDE, 2017, 10 (06): : 1361 - 1406
  • [7] On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations
    Hassainia, Zineb
    ANNALES HENRI POINCARE, 2022, 23 (08): : 2877 - 2917
  • [8] Global well-posedness of 3D axisymmetric MHD system with large swirl magnetic field
    Zhang, Zujin
    Rao, Jinfan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [9] Global well-posedness for the incompressible MHD equations with variable viscosity and conductivity
    Chen, Fei
    Li, Yongsheng
    Zhao, Yongye
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) : 1051 - 1071
  • [10] Global well-posedness for the two-dimensional nonlinear Boussinesq equations with vertical dissipation
    Wu, Gang
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) : 2891 - 2926