Carbon nanofibers embedded in nanopores decorated graphite felt electrodes for enhanced vanadium redox flow batteries performance

被引:0
|
作者
Wang, Liying [1 ]
Zhao, Yu [1 ]
Liu, Huang [1 ]
Wang, Tong [1 ]
Liu, Chenguang [1 ]
Chu, Pan [1 ]
Leung, Puiki [2 ]
机构
[1] Petrochina Shenzhen New Energy Res Inst Co LTD, Shenzhen, Peoples R China
[2] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, MOE, Chongqing 400030, Peoples R China
关键词
Vanadium redox flow battery; Electrode; Catalyst; Carbon nanofibers; Energy efficiency; NEGATIVE ELECTRODE; MASS-TRANSFER; HIGH-POWER; NANOPARTICLES;
D O I
10.1016/j.jelechem.2024.118524
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study introduces a novel electrode design, incorporating carbon nanofibers (CNFs) embedded in nanopores on graphite felt, achieved through a simplified one-step chemical vapor deposition process. The electrodes exhibit a uniform distribution of carbon nanofibers and nanopores, significantly enhancing active sites for vanadium redox reactions. Comprehensive characterization, including X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis, confirmed a significant increase in surface area and catalytic activity. When tested at a current density of 200 mA cm(-2), the modified electrodes demonstrated a notable improvement in electrochemical performance, achieving over 75 % energy efficiency and maintaining this efficiency over 300 cycles. The cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) results indicated enhanced kinetics and reduced charge transfer resistance. Post-mortem SEM images confirmed the structural integrity of the nanofibers after extensive cycling tests.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes
    Davies, Trevor J.
    Tummino, Joseph J.
    C-JOURNAL OF CARBON RESEARCH, 2018, 4 (01):
  • [2] Graphite felt with vapor grown carbon fibers as electrodes for vanadium redox flow batteries
    Hsiharng Yang
    Chein-Hsin Hung
    Shuo-Ping Wang
    I-Long Chiang
    Rare Metals, 2011, 30 : 1 - 4
  • [3] Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries
    Jiang, Fengjing
    He, Zongqi
    Guo, Dingyu
    Zhou, Xinjie
    JOURNAL OF POWER SOURCES, 2019, 440
  • [4] Graphite felt with vapor grown carbon fibers as electrodes for vanadium redox flow batteries
    Yang Hsiharng
    Hung Chein-Hsin
    Wang Shuo-Ping
    Chiang I-Long
    RARE METALS, 2011, 30 : 1 - 4
  • [5] A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries
    Wei, L.
    Zhao, T. S.
    Zhao, G.
    An, L.
    Zeng, L.
    APPLIED ENERGY, 2016, 176 : 74 - 79
  • [6] Analysis of the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries
    Barranco, Jose E.
    Cherkaoui, Abdenbi
    Montiel, Manuel
    Gonzalez-Espinosa, Ana
    Lozano, Antonio
    Barreras, Felix
    ELECTROCHIMICA ACTA, 2023, 470
  • [7] Graphene Functionalized Carbon Felt/Graphite Felt Fabrication as Electrodes for Vanadium Redox Flow Batteries (VRBs): A Review
    Teo, Ellie Yi Lih
    Marzuki, Omar Faruqi
    Chong, Kwok Feng
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (04): : 1685 - 1693
  • [8] Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment
    Hammer, Eva-Maria
    Berger, Benedikt
    Komsiyska, Lidiya
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2014, 3 (01): : 7 - 12
  • [9] Carbon nanofibers grown on the surface of graphite felt by chemical vapour deposition for vanadium redox flow batteries
    He, Zhangxing
    Liu, Lei
    Gao, Chao
    Zhou, Zhi
    Liang, Xinxing
    Lei, Ying
    He, Zhen
    Liu, Suqin
    RSC ADVANCES, 2013, 3 (43): : 19774 - 19777
  • [10] Activity gradient carbon felt electrodes for vanadium redox flow batteries
    Kim, Youngkwon
    Choi, Yun Young
    Yun, Nari
    Yang, Mingyu
    Jeon, Yonghee
    Kim, Ki Jae
    Choi, Jung-Il
    JOURNAL OF POWER SOURCES, 2018, 408 : 128 - 135