Poisson geometry and Azumaya loci of cluster algebras

被引:0
作者
Muller, Greg [1 ]
Nguyen, Bach [2 ]
Trampel, Kurt [3 ]
Yakimov, Milen [4 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[2] Xavier Univ Louisiana, Dept Math, New Orleans, LA 70125 USA
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[4] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
Cluster algebras; Gekhtman-Shapiro-Vainshtein; Poisson brackets; Torus orbits of symplectic leaves; SKEIN; REPRESENTATIONS; CENTERS;
D O I
10.1016/j.aim.2024.109822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two main types of objects in the theory of cluster algebras: the upper cluster algebras U with their Gekhtman- Shapiro-Vainshtein Poisson brackets and their root of unity quantizations U epsilon . On the Poisson side, we prove that (without any assumptions) the spectrum of every finitely generated upper cluster algebra U with its GSV Poisson structure always has a Zariski open orbit of symplectic leaves and give an explicit description of it. On the quantum side, we describe the fully Azumaya loci of the quantizations U epsilon under the assumption that A epsilon = U epsilon and U epsilon is a finitely generated algebra. All results allow frozen variables to be either inverted or not. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:45
相关论文
共 37 条
[1]   Quantum cluster algebras [J].
Berenstein, A ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :405-455
[2]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[3]   Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations [J].
Bonahon, Francis ;
Wong, Helen .
INVENTIONES MATHEMATICAE, 2016, 204 (01) :195-243
[4]   The ramifications of the centres: Quantised function algebras at roots of unity [J].
Brown, KA ;
Gordon, I .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :147-178
[5]  
Brown KA, 2003, J REINE ANGEW MATH, V559, P193
[6]   The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras [J].
Brown, KA ;
Gordon, I .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) :733-779
[7]  
BROWN KA, 2002, LECT ALGEBRAIC QUANT
[8]  
Casals R, 2024, Arxiv, DOI arXiv:2207.11607
[9]  
Chari V., 1994, GUIDE QUANTUM GROUPS
[10]  
De Concini C., 1993, D MODULES REPRESENTA, V1565, P31