Gross primary production-coupled evapotranspiration in the global arid and semi-arid regions based on the NIRv index

被引:1
作者
Su, Yanxin [1 ,2 ]
Gan, Guojing [3 ]
Bu, Jingyi [4 ]
Yuan, Mengjia [1 ,2 ]
Ma, Hongyu [1 ,2 ]
Liu, Xianghe [1 ,2 ]
Zhang, Yongqiang [1 ,2 ]
Gao, Yanchun [1 ]
机构
[1] Chinese Acad Sci, Key Lab Water Cycle & Related Land Surface Proc, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Key Lab Lake & Watershed Sci Water Secur, Nanjing 210008, Peoples R China
[4] Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Arid and semi-arid regions; NIRv; Evapotranspiration; Gross primary production; LAND-SURFACE TEMPERATURE; LATENT-HEAT FLUX; WATER-RESOURCES MANAGEMENT; NET PRIMARY PRODUCTION; SENSITIVITY-ANALYSIS; HYDROLOGICAL CYCLE; TIME-SERIES; MODEL; SOIL; EVAPORATION;
D O I
10.1016/j.jhydrol.2024.132012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In arid and semi-arid regions, accurate estimates of global primary productivity (GPP) and evapotranspiration (ET) are critical for understanding and managing water and carbon cycling in these fragile ecosystems. In this study, an improved ET-photosynthesis model (PT-JPL-GPP) was used to optimize GPP and ET estimates in these ecosystems by introducing the near infrared reflectance index (NIRv). NIRv, an indicator of the light use efficiency of vegetation, was integrated into the PT-JPL model. Compared to the original PT-JPL and existing remote sensing models, this PT-JPL-GPP model displayed a higher correlation (R-2 = 0.73) and lower BIAS (-19.57 %) for GPP estimation. ET estimates were also noticeably improved, the R2 increased by 0.03(SN-Dhr) to 0.16(USSRC), and the Root Mean Square Error (RMSE) reduced by 0.57 mm/month (SN-Dhr) to 4.64 mm/month (USSRC). Particularly at the GRA site, the R-2 was increased from 0.63 to 0.74, and the RMSE and bias was decreased by 1.25 mm/month and 10.51 %, respectively. The PT-JPL-GPP model was comparable with GLEAM, VPM, MOD17, MOD16, and PML-V2 models. The PT-JPL-GPP model exhibits a lower root mean square error and higher correlation for estimating GPP, compared to the VPM, MOD17, and PML-V2 models. The PT-JPL-GPP model outperformed PT-JPL, MOD16 models for estimating ET, but was slightly poorer than GLEAM and PML-V2 models. Our results highlight the merits of NIRv for improving GPP and ET estimates.
引用
收藏
页数:16
相关论文
共 130 条
  • [1] Dew formation and water vapor adsorption in semi-arid environments - A review
    Agam, N
    Berliner, PR
    [J]. JOURNAL OF ARID ENVIRONMENTS, 2006, 65 (04) : 572 - 590
  • [2] Spatial Resolution Enhancement of Vegetation Indexes via Fusion of Hyperspectral and Multispectral Satellite Data
    Alparone, Luciano
    Arienzo, Alberto
    Garzelli, Andrea
    [J]. REMOTE SENSING, 2024, 16 (05)
  • [3] Canopy near-infrared reflectance and terrestrial photosynthesis
    Badgley, Grayson
    Field, Christopher B.
    Berry, Joseph A.
    [J]. SCIENCE ADVANCES, 2017, 3 (03):
  • [4] Using remote sensing information to enhance the understanding of the coupling of terrestrial ecosystem evapotranspiration and photosynthesis on a global scale
    Bai, Yun
    Zhang, Sha
    Zhang, Jiahua
    Wang, Jingwen
    Yang, Shanshan
    Magliulo, Vincenzo
    Vitale, Luca
    Zhao, Yanchuang
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 100
  • [5] What limits evaporation from Mediterranean oak woodlands - The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?
    Baldocchi, Dennis D.
    Xu, Liukang
    [J]. ADVANCES IN WATER RESOURCES, 2007, 30 (10) : 2113 - 2122
  • [6] Atmospheric humidity deficits tell us how soil moisture deficits down-regulate ecosystem evaporation
    Baldocchi, Dennis D.
    Keeney, Nicole
    Rey-Sanchez, Camilo
    Fisher, Joshua B.
    [J]. ADVANCES IN WATER RESOURCES, 2022, 159
  • [7] Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate
    Beer, Christian
    Reichstein, Markus
    Tomelleri, Enrico
    Ciais, Philippe
    Jung, Martin
    Carvalhais, Nuno
    Roedenbeck, Christian
    Arain, M. Altaf
    Baldocchi, Dennis
    Bonan, Gordon B.
    Bondeau, Alberte
    Cescatti, Alessandro
    Lasslop, Gitta
    Lindroth, Anders
    Lomas, Mark
    Luyssaert, Sebastiaan
    Margolis, Hank
    Oleson, Keith W.
    Roupsard, Olivier
    Veenendaal, Elmar
    Viovy, Nicolas
    Williams, Christopher
    Woodward, F. Ian
    Papale, Dario
    [J]. SCIENCE, 2010, 329 (5993) : 834 - 838
  • [8] Brandt J., 2015, Monitoring and Modelling Dynamic Environments: (A Festschrift in Memory of Professor John B. Thornes), P43, DOI [10.1002/9781118649596.ch6, DOI 10.1002/9781118649596.CH6]
  • [9] Social cognition in Williams syndrome
    Campos, Ruth
    Martinez-Castilla, Pastora
    Sotillo, Maria
    [J]. REVISTA DE PSICOLOGIA SOCIAL, 2013, 28 (03): : 349 - 360
  • [10] An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: the SUDMED programme
    Chehbouni, A.
    Escadafal, R.
    Duchemin, B.
    Boulet, G.
    Simonneaux, V.
    Dedieu, G.
    Mougenot, B.
    Khabba, S.
    Kharrou, H.
    Maisongrande, P.
    Merlin, O.
    Chaponniere, A.
    Ezzahar, J.
    Er-Raki, S.
    Hoedjes, J.
    Hadria, R.
    Abourida, A.
    Cheggour, A.
    Raibi, F.
    Boudhar, A.
    Benhadj, I.
    Hanich, L.
    Benkaddour, A.
    Guemouria, N.
    Chehbouni, A. H.
    Lahrouni, A.
    Olioso, A.
    Jacob, F.
    Williams, D. G.
    Sobrino, J. A.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (17-18) : 5161 - 5181