Handling Missing Values in Local Post-hoc Explainability

被引:1
|
作者
Cinquini, Martina [1 ,2 ]
Giannotti, Fosca [2 ,3 ]
Guidotti, Riccardo [1 ,2 ]
Mattei, Andrea [1 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] ISTI CNR, Pisa, Italy
[3] Scuola Normale Super Pisa, Pisa, Italy
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II | 2023年 / 1902卷
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Local Post-hoc Explanation; Decision-Making; Missing Values; Missing Data; Data Imputation; MULTIPLE IMPUTATION;
D O I
10.1007/978-3-031-44067-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [41] A novel clustering-based purity and distance imputation for handling medical data with missing values
    Ching-Hsue Cheng
    Shu-Fen Huang
    Soft Computing, 2021, 25 : 11781 - 11801
  • [42] Handling missing values in cost effectiveness analyses that use data from cluster randomized trials
    Diaz-Ordaz, K.
    Kenward, Michael G.
    Grieve, Richard
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2014, 177 (02) : 457 - 474
  • [43] Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data
    Bazo-Alvarez, Juan Carlos
    Morris, Tim P.
    Tra My Pham
    Carpenter, James R.
    Petersen, Irene
    CLINICAL EPIDEMIOLOGY, 2020, 12 : 1045 - 1057
  • [44] Adjusted weight voting algorithm for random forests in handling missing values
    Xia, Jing
    Zhang, Shengyu
    Cai, Guolong
    Li, Li
    Pan, Qing
    Yan, Jing
    Ning, Gangmin
    PATTERN RECOGNITION, 2017, 69 : 52 - 60
  • [45] JUST COMPRESS AND RELAX: HANDLING MISSING VALUES IN BIG TENSOR ANALYSIS
    Marcos, J. H.
    Sidiropoulos, N. D.
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 218 - 221
  • [46] Decision tree: Compatibility of techniques for handling missing values at training and testing
    Gavankar S.
    Sawarkar S.
    2016, UK Simulation Society, Clifton Lane, Nottingham, NG11 8NS, United Kingdom (17): : 10.1 - 10.7
  • [47] DualBoost : Handling Missing Values with Feature Weights and Weak Classifiers that Abstain
    Wang, Weihong
    Xu, Jie
    Wang, Yang
    Cai, Chen
    Chen, Fang
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1543 - 1546
  • [48] A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers
    Sharifnia, Amir Masoud
    Kpormegbey, Daniel Edem
    Thapa, Deependra Kaji
    Cleary, Michelle
    JOURNAL OF ADVANCED NURSING, 2025,
  • [49] A Review of Missing Values Handling Methods on Time-Series Data
    Pratama, Irfan
    Permanasari, Adhistya Erna
    Ardiyanto, Igi
    Indrayani, Rini
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2016,
  • [50] Handling Missing Values Based on Similarity Classifiers and Fuzzy Entropy Measures
    Karim, Faten Khalid
    Elmannai, Hela
    Seleem, Abdelrahman
    Hamad, Safwat
    Mostafa, Samih M.
    ELECTRONICS, 2022, 11 (23)